
DESIGN OF LINEAR AND NONLINEAR CONTROL SYSTEMS VIA STATE 
VARIABLE FEEDBACK, W I T H  APPLICATIONS 

I N  NUCLEAR REACTOR CONIlROL 
i 

John W. Herring, Jr. 
Donald G. Schultz 
Lynn E, Weaver 
Robert E ,  Vanasse 

ENGINEERING EXPERIMENT STATION 
COLLEGE OF ENGINEERING 

THE UNIVERSITY OF ARIZONA 
TUCSON, ARIZONA 



I 
I .  
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
1 

b I 

DESIGN OF LINEAR AND NONLINEAR CONTROL SYSTEMS V I A  STATE 
VARIABLE FEEDBACK, WITH APPLICATIONS 

I N  NUCLEAR REACTOR CONTROL 

Prepared Under Grant NsG-490 
Nat ional  Aeronautics and Space Administration 

John W. Herring, Jr. 
Donald G. Schul tz  
Lynn E.  Weaver 
Robert E. Vanasse 

Nuclear Engineering Department 
The Universi ty  of Arizona 

Tucson, Arizona 
Feb rua ry  19 6 7 

Engineering Experiment S t a t i o n  
The Universi ty  of Arizona 
College of Engineering 

Tucson, Arizona 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Chapter 

1 

2 

3 

4 

TABLE OF CONTENTS 

Page 

PREFACE ............................................... i v  
ABSTRACT .............................................. V 

INTRODUCTION TO THE PROBLEM ........................... 1 

In t roduc t ion  .......................................... 1 
H i s t o r i c a l  Background ................................. 2 
Approach t o  the Problem ............................... 5 
Organization .......................................... 7 

DEFINITIONS AND STABILITY CRITERIA .................... 9 

In t roduc t ion  .......................................... 9 

Def in i t i ons  ........................................... 11 
1 2  

System Representation ................................. 9 

The S t a b i l i t y  C r i t e r i o n  of Popov ...................... 
CLOSED LOOP DESIGN OF LINEAR SYSTEMS V I A  STATE 
VARIABLE FEEDBACK ..................................... 18 

In t roduc t ion  .......................................... 18 
The SVF Method--Matrix Formulation .................... 24 
Applicat ions i n  Nuclear Reactor Control  S v s t e m  Design.. 36 
Gain I n s e n s i t i v e  Systems .............................. 58 
Applicat ions of Gain I n s e n s i t i v e  Design t o  Reactor 
Control  ............................................... 62 
Procedure When A l l  S t a t e  Variables  Cannot B e  Fed Back.. 69 
Summary ............................................... 71 

DESIGN OF NONLINEAR AND/OR TIME-VARYING CONTROL SYSTEMS 
V I A  STATE VARIABLE FEEDBACK ........................... 73 

In t roduc t ion  .......................................... 73 
The SVF Method for Nonlinear Systems .................. 74 
Absolute S t a b i l i t y  of t h e  Resul t ing Systems ........... 78 
Closed Loop Response of t h e  Resul t ing System .......... 78 
The SVF Method f o r  Time-Varying Systems ............... 9 5  
Summary ............................................... 96 

ii 



TABLE OF CONTENTS (Continued) 

Chapter 

5 

6 

Page 

PRACTICAL LIMITATIONS AND EXTENSIONS OF THE DESIGN 
PROCEDURE ............................................ 98 

In t roduc t ion  ......................................... 98 
S t r u c t u r a l  S t a b i l i t y  of  t h e  System ................... 99 
E f f e c t  of  t h e  Location of t h e  Nonlinear and/or  
Time-Varying Gain .................................... 112 

117 Design f o r  F i n i t e  Sec tors  of S t a b i l i t y  
surmnary .............................................. 122 

............... 

CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK ......... 1 2 3  

Conclusions .......................................... 123 
125 Suggestions f o r  Further  Work ......................... 

LIST OF REFERENCES ................................... 127 

iii 



I 
i -  
1 
I 
I 
1 
I 
I 
I 
I 
I 
I 
'1 
I 
I 
I 
I 
I 
I 

PREFACE 

This r e p o r t  r ep resen t s  t he  completion of one phase of t he  s tudy of 

c o n t r o l  system design,  a study sponsored by t h e  Nat ional  Aeronautics and 

Space Administration under Grant NsG-490 on research i n  and a p p l i c a t i o n  

of modem automatic c o n t r o l  theory t o  nuc lea r  rocke t  dynamics and c o n t r o l .  

The r e p o r t  i s  intended t o  be a self-contained u n i t  and t h e r e f o r e  r epea t s  

some of the work presented i n  previous s t a t u s  r e p o r t s .  

Po r t ions  of t h e  work were submitted t o  t h e  Department of E l e c t r i c a l  

Engineering a t  the Universi ty  of Arizona i n  p a r t i a l  f u l f i l l m e n t  of t h e  

requirements f o r  t h e  degree of Doctor of Philosophy. 

i v  
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ABSTRACT 

A method f o r  designing l i n e a r  closed loop c o n t r o l  systems, and non- 

l i n e a r  c losed  loop c o n t r o l  systems having a s i n g l e ,  memoryless, non l inea r  

and/or  time-varying gain wi th  an input-output c h a r a c t e r i s t i c  confined t o  

the  f i r s t  and t h i r d  quadrants i s  developed. Nonlinear systems designed 

by t h e  proposed method have the  p rope r t i e s  of a b s o l u t e  s t a b i l i t y  and 

bounded ou tpu t s  f o r  bounded inpu t s  f o r  any non l inea r  gain of t h e  type 

considered. Systems i n  which t h e  gain i s  time-varying a l s o  have t h e s e  

p r o p e r t i e s  i f  t h e  time-varying gain i s  constrained t o  a f i n i t e  s e c t o r  i n  

the f i r s t  and t h i r d  quadrants.  The l i n e a r  p a r t  of t he  open loop system 

can have no more than one i n t e g r a t i o n ,  and a l l  o t h e r  p o l e s  must have 

nega t ive  real p a r t s .  I n  i t s  bas i c  form, t h e  design method r e q u i r e s  t h a t  

t he  non l inea r  and/or time-varying gain be loca ted  a t  t h e  inpu t  end o f  t h e  

plsrit  to 52 zont rc l lcd .  

The design procedure is based on feeding back a l l  t h e  s t a t e  v a r i a b l e s  

through constant l inear  ga in  elements. An equ iva len t  feedback t r a n s f e r  

func t ion ,  H 

of t he  l i n e a r  p a r t  of t h e  open loop system) l i n e a r  a l g e b r a i c  equat ions 

which can be  solved f o r  the feedback c o e f f i c i e n t s .  H (s)  has n-1 zeros  

which are forced t o  be equal  t o  n-1 of t he  poles  of t h e  l i n e a r  p a r t  of t h e  

( s ) ,  from t h e  output  i s  used t o  determine n (n i s  t h e  o rde r  
eq 

eq 

forward t r a n s f e r  func t ion ,  G(s).  It  i s  shown t h a t  G(s)H ( s )  has one po le  

and no t  more than one zero.  

eq 

Thus the  Popov frequency c r i t e r i o n  f o r  abso lu t e  

s t a b i l i t y  i s  s a t i s f i e d  f o r  a l l  gains of t h e  type considered. 

V 
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An equiva len t  system f o r  input-output r e l a t i o n s  which cons i s t  of a 

f i r s t  o rde r  nonl inear  and/or time-varying p a r t  i n  series with an n-1 c r d e r  

s t a b l e ,  l i n e a r ,  t ime-invariant  p a r t  is  der ived.  This equiva len t  system 

is  used t o  determine t h e  closed loop response f o r  a known inpu t  t o  a system 

designed by the  proposed method. It is  a l s o  used t o  show t h a t  the  closed 

loop system has  n-1 poles  equal  t o  n-1 poles  of t h e  l i n e a r  p a r t  of t he  open 

loop system. This sugges ts  another  key s t e p  i n  t h e  design procedure,  t h a t  

of fo rc ing  n-1 of t he  open loop poles  t o  be equal  t o  n-1 des i r ed  closed 

loop poles .  Closed loop poles  on o r  nea r  t h e  imaginary axis are no t  pe r -  

mi t ted  due t o  s t r u c t u r a l  s t a b i l i t y  problems. 

Problems chich might be  encountered i n  applying t h e  design procedure 

t o  phys i ca l  systems are discussed,  inc luding  app l i ca t ions  t o  mul t i reg ion  

nuc lea r  r e a c t o r  c o n t r o l  and t h e  s t r u c t u r a l  s t a b i l i t y  problem mentioned 

above. 

when a l l  t h e  s t a t e  v a r i a b l e s  cannot be  fed back, o r  when the  n o n l i n e a r i t y  

is  n o t  i n  the  proper  l o c a t i o n  f o r  t h e  b a s i c  procedure t o  apply,  are d i s -  

cussed. 

Modif icat ions i n  the  bas i c  design procedure which might be  used 

The Popov theorem f o r  absolu te  s t a b i l i t y  and t h e  design of l i nea r  

systems for a des i r ed  closed loop response by feeding  back a l l  t h e  s t a t e  

v a r i a b l e s  are included as background ma te r i a l .  The mat r ix  formulat ion i s  

developed f o r  designing l i n e a r  systems, and t h e  procedure i s  extended t o  

the  design of l i n e a r  ga in  i n s e n s i t i v e  systems. The procedure f o r  designing 

l i n e a r  ga in  i n s e n s i t i v e  systems i s  then extended t o  nonl inear  and/or  t i m e -  

varying sys  t e m s  . 
The proposed design procedure f o r  non l inea r  and/or time-varying 

s y s t e m s  i s  app l i cab le  t o  svstems of any order .  Examples are given t o  

v i  
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computer s imula t ion  of a system designed by t h e  proposed method are  given. 
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CHAPTER I 

INTRODUCTION TO THE PROBLEM 

Introduction 

The performance required of control systems and devices by modem 

technology has resulted in the development of complicated systems and 

devices which are not amenable to analysis and synthesis by the classical 

linear techniques. In addition to the undesired nonlinearities which 

arise in these systems, nonlinearities are often introduced purposely in 

order to realize the desired performance better or more economically. No 

general methods for the analysis and synthesis of such nonlinear systems 

exist, Rather, the methods in use today can be applied only to particular 

classes of systems or t o  particular applications. This is not surprising 

because of the wide variety of nonlinear systems. 

T I  ALLLrea~ed interest is also being manifested in systems with time- . 
varying parameters. One obvious reason f o r  this interest stems from the 

space program where certain parameters of the control system may vary over 

very wide ranges as the air density and temperature through which a vehicle 

is moving changes rapidly. If a parameter variation is dependent on the 

input to the system, the system is nonlinear. If the variation is caused 

by some effect other than the input, and if this effect can be expressed 

independently of the input, the system is time-varying. The comment on 

the lack of general analysis and synthesis techniques for nonlinear systems 

applies to time-varying systems as well. 

1 
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A d i sp ropor t iona te  amount of c o n t r o l  theory has  always been 

d i r e c t e d  towards s t a b i l i t y  ana lys i s .  This i s  p a r t i c u l a r l y  t r u e  of non- 

l i n e a r  c o n t r o l  theory.  The con t ro l  engineer  i s  handicapped by t h e  l a c k  

of s y n t h e s i s  procedures which assure n o t  only the  s t a b i l i t y  of t h e  r e s u l t -  

i n g  system, bu t  o t h e r  d e s i r a b l e  ope ra t ing  c h a r a c t e r i s t i c s  as w e l l .  The 

development of a proposed syn thes i s  procedure which can be  used t o  design 

c e r t a i n  non l inea r  and/or time-varying systems i s  t h e  s u b j e c t  of t h i s  

d i s s e r t a t i o n .  

H i s t o r i c a l  Background 

The p r a c t i c e s  and techniques of c lass ical  c o n t r o l  theory involve 

p r imar i ly  frequency domain methods. The t r end  i n  modern c o n t r o l  theory 

has  been away from t h e s e  frequency domain methods t o  a n a l y s i s  and design 

procedures based on t i m e  domain methods. S ta te  space concepts and tech- 

niques involving ma t r ix  equations are becoming i n c r e a s i n g l y  important.  

Kalman (1964) has used such techniques t o  show t h a t  a l i n e a r  system sub- 

j e c t  t o  a q u a d r a t i c  performance index can be made optimum by feeding back 

a l l  t h e  state v a r i a b l e s  through constant  c o e f f i c i e n t s .  This  r e s u l t  has 

been a key influence i n  the proposals by Morgan (1963, 1966) and Schultz 

(1966) t h a t  l i n e a r  systems b e  designed f o r  a des i r ed  closed loop response 

by feeding back a l l  t h e  s t a t e  v a r i a b l e s  i n  t h e  proper l i n e a r  combination. 

Other recent  developments i n  c o n t r o l  theory involve a n a l y s i s  and 

design procedures f o r  nonl inear  systems. P r i o r  t o  t h e  p a s t  f i f t e e n  t o  

twenty yea r s ,  p r a c t i c a l l y  a l l  the l i t e r a t u r e  on the  a n a l y s i s  and s y n t h e s i s  

of feedback c o n t r o l  systems was confined t o  t h e  cons ide ra t ion  of l i n e a r  

systems. Valuable techniques have been developed and made a v a i l a b l e  f o r  
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t h e  s tudy of l i n e a r  sys t em c h a r a c t e r i s t i c s .  I n  r ecen t  years, an inc reas -  

i n g  awareness on t h e  p a r t  of con t ro l  engineers  t h a t  r e s t r i c t i o n  of think- 

i n g  t o  l i n e a r  s y s t e m s  imposes unnecessary l i m i t a t i o n s  on t h e  design of 

c o n t r o l  systems has  r e s u l t e d  in  a concerted e f f o r t  t o  develop correspond- 

i n g  a n a l y t i c a l  techniques f o r  non l inea r  systems. 

theory f o r  nonl inear  systems, which behave d i f f e r e n t l y  f o r  d i f f e r e n t  

i n p u t s ,  appears t o  b e  v i r t u a l l y  impossible a t  t h e  p re sen t  t i m e  because of 

t h e  mathematical d i f f i c u l t i e s  involved. 

made i n  t h e  t h e o r e t i c a l  aspects  of t h e  problem, most of t h e  procedures 

which look good i n  theory become unwieldy when app l i ed  t o  p r a c t i c a l  systems 

of o rde r  h ighe r  than f i r s t  o r  second. 

have been developed apply only t o  c e r t a i n  r e s t r i c t e d  s i t u a t i o n s .  

t h e  more widely known methods i n  use today are: 

of  n o n l i n e a r i t i e s  about some operat ing po in t  and t h e  a p p l i c a t i o n  of l i n e a r  

theory t o  t h e  r e s u l t i n g  system. (2)  Graphical methods. (3) Numerical 

methods. (4) Describing funct ion a n a l y s i s .  ( 5 )  Computer methods, both 

analog and d i g i t a l .  ( 6 )  Second method of Liapunov. (7)  Popov theory.  

(8) 

and dynamic programming. 

A completely gene ra l  

Although some progress  has been 

Also, most of t h e  techniques t h a t  

Some of 

(1) The l i n e a r i z a t i o n  

Optimization techniques based on t h e  maximum p r i n c i p l e  of Pontryagin 

Evidence of t h e  increased i n t e r e s t  i n  time-varying systems is  

apparent  i n  t h e  published r e s u l t s  of Rozenvasser (1963), Bongiorno(1963), 

Sandberg (1964), and Narendra and Goldwyn (1964). Higgins (1966) shows 

how t h e  work of t h e  las t  t h r e e  a r e  r e l a t e d  t o  t h e  Popov c r i t e r i o n .  

The Popov theory is  of primary i n t e r e s t  h e r e ,  with t h e  i s o c l i n e  

method and Liapunov'ssecond method a l s o  being used. The Liapunov method 
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i l l u s t r a t e s  t h e  t r end  of modem c o n t r o l  theory t o  t i m e  domain a n a l y s i s  

and design. 

r i o n ,  b u t  i t  is derived from t i m e  domain equations.  

between Popov's r e s u l t s  and the  second method of Liapunov has  been 

e s t a b l i s h e d  by Yakubovich (1962) and Kalman (1963fd. 

The Popov s t a b i l i t y  c r i t e r i o n  is  a freq3ency domain crite- 

The r e l a t i o n s h i p  

The i s o c l i n e  method is a b a s i c  g r a p h i c a l  method which a p p l i e s  

d i r e c t l y  t o  a f i r s t  o r d e r  equation of t h e  form K - f ( x , t ) ,  It is 

a p p l i c a b l e  t o  second o rde r  equat ions of t h e  form 2 + f(x,x) = 0. It is  

known as t h e  phase p l ane  method when used with second o r d e r  systems and 

is discussed i n  most books deal ing wi th  non l inea r  systems, i nc lud ing  

T r u d  (1955) and Gibson (1963). 

Liapunov developed his Second Method i n  t h e  l a te  n ine teen th  

century,  bu t  i t  w a s  no t  u n t i l  the 1940's i n  Russia and t h e  e a r l y  1960's 

i n  t h i s  country t h a t  c o n t r o l  engineers became i n t e r e s t e d  i n  t h e  theory. 

Standard Engl ish language references are t h e  books by Hahn (1963) and 

LaSa l l e  and Lefshetz  (1961), and t h e  paper by Kalman and Bertram (1960). 

The method has  evoked widespread i n t e r e s t  because of i t s  gene ra l  nature .  

However, because of t h e  d i f f i c u l t y  i n  f i n d i n g  Liapunov func t ions  

( e s p e c i a l l y  t h e  b e s t  one), i t  has no t  been p o s s i b l e  t o  apply i t  gene ra l ly  

t o  systems of o rde r  h ighe r  than two o r  t h ree .  

methods f o r  gene ra t ing  Liapunov func t ions  are found i n  Letov (1961), 

Schultz  and Gibson (1962), Marsolis and Vogt (1963), and Gibson (1963). 

Some of t h e  b e t t e r  known 

The theory of Popov (1961) involves  a frequency domain s t a b f l i t y  

c r i t e r i o n  which has  a simple graphical  i n t e r p r e t a t i o n ,  

is no t  l i m i t e d  by t h e  o rde r  of the  system. It provides  abso lu te  s t a b i l i t y  

information and t h e r e f o r e  cannot b e  used t o  determine regions of s t a b i l i t y  

I ts  use fu lness  
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as i n  t h e  Second Method. 

Aizerman and Gantmacher (1964) and Lefshetz  (1965). Extensions t o  t h e  

Popov theory involving condi t ions on t h e  s l o p e  of t h e  n o n l i n e a r i t y  have 

been made by Yakubovich (1965) , Brocket t  and W i l l e m s  (1965a,, 1969b) , 
Dewey and Ju ry  (1966), and Dewey (1966). The i n t e r p r e t a t i o n  of t h e  

cr i ter ia  r epor t ed  i n  t h e s e  papers is  much more d i f f i c u l t  than t h a t  f o r  

n o n l i n e a r i t i e s  w i th  no r e s t r i c t i o n  on t h e  s lope .  The r e s u l t s  of Dewey 

appear t o  be  i n  t h e  most useful  form, whi le  those of Brockett  and W i l l e m s  

are probably t h e  most general .  

Other r e fe rences  on t h e  Popov theory are 

Approach t o  t h e  Problem 

I n  t h i u  d i s s e r t a t i o n ,  some of t h e  r e c e n t l y  developed methods of 

s t a b i l i t y  a n a l y s i s  f o r  nonl inear  and/or time-varying systems are combined 

w i t h  t h e  modem c o n t r o l  concept of feedingback a l l  t h e  s ta te  v a r i a b l e s  t o  

develop a proposed design procedure f o r  a c e r t a i n  class of non l inea r  and/ 

o r  time-varying s y s t m .  A method f o r  determining t h e  closed loop response 

of t h e  r e s u l t i n g  system is alsc developed. 

c a b l e  t o  s i n g l e  inpu t ,  s i n g l e  output ,  systems con ta in ing  a s i n g l e  memory- 

la66 nonlinear and/or time-varying ga in  whose input-output c h a r a c t e r i s t i c  

is confined t o  t h e  f i r s t  and t h i r d  quadrants.  A s i g n i f i c a n t  f a c t o r  of 

both t h e  design and a n a l y s i s  procedure i s  t h a t  they are a p p l i c a b l e ,  i n  a 

p r a c t i c a l  sense,  t o  systems of any order .  

The des ign procedure is appl i -  

The design procedure stems from t h e  method of designing l i n e a r  

systems f o r  a des i r ed  closed loop response as developed by Schultz  (1966). 

It makes use of both t h e  i d e a  of feeding back a l l  t h e  s t a t e  v a r i a b l e s  as 

suggested by modem c o n t r o l  theory and of series compensation as used i n  



6 

c la s s i ca l  design procedures. The method of  designing l i n e a r  systems €or  

a d e s i r e d  closed loop response is f i r s t  ex t ended . to  a procedure f o r  de- 

s ign ing  l i n e a r  gain i n s e n s i t i v e  systems. This  procedure i s  then used 

t o  develop a design procedure fo r  the c iass  u i  iiol-iIiiieiii- md/Por t i m e  

varying systems given above. The Popov s t a b i l i t y  c r i t e r i o n  i s  used as 

a s y n t h e s i s  t o o l  i n  t h a t  t h e  l i n e a r  part of  t h e  system i s  compensated 

by feeding back a l l  t h e  s t a t e  v a r i a b l e s  i n  a l i n e a r  comblnation such 

t h a t  t h e  Popov s t a b i l i t y  condi t ions -are always s a t i s f i e d  with no r e s t r i c -  

t i o n s  on t h e  non l inea r  and/or time-varying Rain. Thus t h e  abso lu te  

s t a b i l i t y  s e c t o r  of t h e  r e s u l t i n g  system inc ludes  t h e  entTre f i r s t  and 

t h i r d  quadrants.  An equivalent  system is  developed which makes i t  

p o s s i b l e  t o  1) show t h a t  t h e  closed loop system hasabounded output  f o r  

bounded i n p u t s  and 2) determine t h e  output  of a p a r t i c u l a r  c losed loop 

system f o r  a known i n p u t ,  r ega rd le s s  of t h e  o rde r  of t h e  system. A l -  

though the  output  of t h e  closed loop system depends unon t h e  p a r t i c u l a r  

non i inea r  and/or time-varysng gain chaiacteriatics, thc system is linear- 

i z e d  t o  t h e  e x t e n t  t h a t  (n-1) of t h e  closed loop Doles remain f i x e d ,  

independent of t h e  gain.  This r e s u l t s  i n  considerably more c o n t r o l  over  

t h e  n a t u r e  of t h e  closed loop response than i s  p o s s i b l e  i n  the  usual  non- 

l i n e a r  and/or time-varvinE system. n r e f e r s  t o  t h e  o r d e r  of  t h e  I f n e a r  

p a r t  of the ep~tem, as discussed i n  Chapter 2 .  

The equ iva len t  system mentioned above c o n s i s t s  of a f i rs t  o rde r  

non l inea r  and/or time-varying par t  and an ( n - 1 ) s t  o rde r  t ime- inva r i an t  

l i n e a r  par t .  

t h i s  equivalent  system t o  show t h a t  a system designed by the  proposed 

method has bounded s o l u t i o n s ,  o r  i s  Lagrange s t a b l e ,  f o r  bounded i n p u t s .  

The Second Method of Liapunov i s  u s e d  i n  conjunct ion w i t h  
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The isocline method is used to determine the output of the nonlinear and/ 

or time-varying gain from the equivalent system for a given inpat. 

this information, the expression for any other variable in the svstem can 

be found by linear transform methods. 

With 

Organization 

The second chapter discusses the type of nonlinear svstem to he 

considered. The stability of such systems is discussed and Popov's 

stability criterion is given. A l s o ,  definitions of terms used in later 

chapters are given. 

Chapter 3 is devoted to linear svstems, and in particular to the 

development of a design procedure for aaln insensitive systems. This 

chapter provides the background for Chapter 4 where the design procedure 

for gain insensitive systems is extended to nonlinear and/or time-varying 

systems. A matrix formulation for the state variable feedback method of 

design is developed and examples are included to illustrate the desiqn 

_I_ procedures. 

The basic design procedure of this dissertation is presented in 

The procedure for designing gain insensitive systems is ex- Chapter 4 .  

tended to systems containing nonlinear and/or time-varying gains. 

stability properties of the resulting system are discussed, and an equiva- 

lent system is developed which makes it possible to determine input-output 

relations of the closed loop system. Examples are included to illustrate 

the design procedure and the determination-of the closed loop response. 

Chapter 5 discusses the structural stability of the systems de- 

signed by the procedure of Chapter 4. That is, it considers the effect 

The 
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on t h e  system’s q u a l i t a t i v e  behavior of s m a l l  changes i n  t h e  parameters.  

The p o s s i b i l i t y  of ob ta in ing  more restrictive r e s u l t s  when those of 

Chapter 4 cannot be achieved is discussed.  

i l l u s t r a t e  t h e  proposed modified design procedures.  

Examples are included t o  

Chapter 6 conta ins  conclusions and suRRestions f o r  f u r t h e r  re- 

search .  



CHAPTER TI 

DEFINITIONS AND STABILITY CRITERIA 

In t roduc t ion  

The purpose of t h i s  chanter  i s  t o  p re sen t  c e r t a i n  s t a b i l i t v  

c r i te r ia  and d e f i n i t i o n s  of terms which are used i n  t h e  following 

chapters .  The Popov s t a b i l i t y  c r i t e r i o n  is  of p a r t i c u l a r  i n t e r e s t  as 

i t  is  used both i n  t h e  design procedure and i n  t h e  a n a l y s i s  of t h e  re- 

s u l t i n g  systems. The c l a s s  of systems t o  which t h e  c r i t e r i o n  a n n l i e s  

and which i s  considered i n t h i s  d i s s e r t a t i o n  i s  discussed.  The extension 

of t h e  Popov theory dea l ing  with time-varying systems and with c o n s t r a i n t s  

on t h e  s lope  of t h e  n o n l i n e a r i t v  are a l s o  given. 

System Representat ion 

The system configurat ion has  t h e  form shown i n  Figure 2-1. N - 
f ( a )  i s  a non l inea r  ga in ,  G ( s )  i s  t h e  t r a n s f e r  func t ion  of a l i n e a r  

system whose po le s  are on t h e  imaginary a x i s  o r  i n  t h e  l e f t  h a l f  p l ane ,  
CI 

(J i s  t h e  input  t o  t h e  nonl inear  ga in  and u = f ( a ) i s  t h e  ou tpu t .  u . i s  

a l s o  t h e  input  c o n t r o l  f o r  t h e  l i n e a r  system. Using t h e  terminologv of 

Aizerman and Gantmacher (1964) ,  t h e  p r i n c i p a l  ca se  is  t h a t  case i n  which 

a l l  t h e  po le s  of G ( s )  a r e  i n  t h e  l e f t  h a l f  plane.  The D a r t i c u l a r  cases 

are those cases  i n  which some of t h e  po le s  of G(s) a r e  on t h e  imaginary 

a x i s  and t h e  o t h e r s  are i n  t h e  l e f t  h a l f  plane.  The s implest  p a r t i c u l a r  

case i s  t h a t  case i n  which G(s) has a s i n g l e  po le  a t  t h e  o r i g i n  and t h e  

9 



Figure 2-1. nth Order System w i t h  One Nonlinearity. 
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other poles are in the left half plane. The order of G ( s )  is designated 

by the letter n. 

The system equations are written in the form 

$ = Ax+bu (3-1) - ”  .. 

u = f(u) 

u =  - I. 5 T 
., 

where 5 is an n-dimentional state vector, b is an n-dimensional control - 
vector, A is the n x n matrix of the linear system G ( s ) ,  uand u are 

the scalar input and output of the nonlinearity, and k is an n-dimensional 

feedback vector. 

.. 

The nonlinearities under consideration satisfy the conditions 

for the principal case, or 

O <  < K  
u -  

( 2 - 4 )  

(2-5)  

for the particular cases, and 

f(0) = 0 . (2 -6 )  

Definitions 

Several definitions of stability and other terms used in this 

dissertation are given in this section. The origin is assumed to be the 

equilibrium point in the definitions of asymptotic and absolute stability. 

Definition 2 - 1 :  The origin i s  globally asymptotically stable 
if, for any initial conditions, the system state always returns 
to the origin as t* m . 
Definition 2-2: For a given K, the class of systems defined by 
Equations 2-1 to 2 - 3  is said to be absolutely stable if for any 
system in this class, that is, for any f(a) which satisfies 
Equation 2-4 for the principal case or Equation 2-5 for the 
particular cases, the origin is globally asymptotically stable. 

Definition 2-3 :  The boundedness of all solutions is described 
as stability in the sense of Lagrange, or Lagrange stability. 
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The fol lowing c r i t e r i o n  f o r  Lagrange s t a b i l i t y  based on the  Second Method 

of Liapunov is given bv Lasa l l e  and Lefschetz  (1961): 

Theorem 2-1: L e t  R be a hounded s e t  containing the  o r i g i n  and 
l e t  V( ) be def ined throyghout t h e  complement of R .  
as 111~71 -+ + 00 and i f  V < 0 throuchout t he  complement of  R ,  then 
t h e  system 2 - = X(x) - -  is  Lagrange s t a b l e .  

D e f i n i t i o n  2-4: S t r u c t u r a l  s t a b i l i t p  i s  t h e  propertv of a physi- 
c a l  system such t h a t  t h e  qual i ta t ive na tu re  of i t s  one ra t ion  
remains unchanged i f  parameters of t h e  svstem are s u b j e c t  t o  
small v a r i a t i o n s .  

I f  V + + Q) 

D e f i n i t i o n  2-5: A system with open loop  po le s  on the  imaginarv 
a x i s  i s  stable-in-the-limit  i f  i t  is s t a b l e  f o r  t h e  l i n e a r  eain 
f ( o )  = ea, where E i s  a r b i t r a r i l y  s m a l l .  C)n t h e  s-plane,  t h i s  
means t h a t  t h e  imaninary a x i s  poles  move i n t o  t h e  l e f t  h a l f  plane 
f o r  a r b i t r a r i l y  s m a l l  l i n e a r  gains  i n  the  closed loop system. 

D e f i n i t i o n  2-6: A p l a n t  i s  s a i d  t o  be completely c o n t r o l l a b l e  
i f  f o r  any to each i n i t i a l  s t a t e  r(t ) can be t r a n s f e r r e d  t o  
any f i n a l  s ta te  x( t , )  i n  a f i n i t e  t i m % .  

D e f i n i t i o n  2-7: An unforced p l an t  i s  s a i d  t o  be  completelv 
observable on [ t  , t f ]  i f  f o r  given to and t every s t a t e  x( to)  
can be d termine2 from t h e  knowledRe of v ( t f  on I t o , t f ' l ,  where 
y ( t )  = c x ( t )  i s  the  output. 9 

- 5  

D e f i n i t i o n  2-4 i s  Riven by Cunningham (1958) and D e f i n i t i o n s  2-6 

and 2-7 by Kreindler  and Sarachik (1964). T t  i s  d e s i r a b l e  t o  express  t h e  

cond i t ions  f o r  a system t o  be c o n t r o l l a b l e  and observable i n  terms of t h e  

c o e f f i c i e n t s  i n  t h e  system equations.  I t . c a n  be shown t h a t  an nth o r d e r  

process  cha rac t e r i zed  by 5 = Ax + bu is  completely c o n t r o l l a b l e  i f  and 

only i f  t h e  v e c t o r s  b ,  ... Ab, ..- ---- , An'lb a r e  l i n e a r l y  independent, and com- 

- -- - 

A ~ , - ' ~ ~  are T T T  
p l e t e l y  observable I f  and only i f  t h e  v e c t o r s  c - , A 5 , ---- ' -  - 
l i n e a r l y  independent (Kalman, 196%). 

The S t a b i l i t y  C r i t e r i o n  of Popov 

The V. M. Popov theorem g ives  s u f f i c i e n t  cond i t ions  f o r  t he  system 

of Equations 2-1 t o  2-3 t o  be a b s o l u t e l y  s t a b l e .  This theorem i s  given below: 
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For t h e  system of Emot ions  2-1 t o  2-3 t o  be a b s o l u t e l v  s tab le  
+ n  the  s e c t o r  TO, K l  for the p r i n c i p a l  case, and i n  the  s e c t o r  
( 0 ,  K] f o r  t h e  p a r t i c u l a r  cases i t  i s  s u f f l c i e n t  t h a t  t h e r e  
e x i s t  a f i n i t e  real  number q such t h a t  f o r  a l l  w > 0 - 

1 
Re[(l + j q w ) C ( j w ) ]  + > 0 (2-7) 

and, a d d i t i o n a l l y  f o r  the p a r t i c u l a r  ca ses ,  t h a t  t he  cond i t ions  
f o r  s t a b i l i t y  in- the- l imit  be s a t i s f i e d .  

A pure ly  geometric formulation of t h e  Popov theorem can be obtained 

from the  above a n a l v t i c  formulation (Aiaerman and Gantmacher, 1P64). A 

modified frequency response,  W(jw), is  used where Rerw(lu) 1 = RetG(jw) 1 = 

X and I m [ W ( j w ) ]  = w I m f G ( j u ) ]  = Y. Then 

Condition 2-7 can now be w r i t t e n  as 

(2-8) 
1 
K x-qY + - > 0. 

On t h e  W-plane t h e  l i m i t i n g  condi t ion of Equation 2-8 i s  the  equat ion of a 

on t h e  real s t r a i g h t  l i n e  with s lope  -which passes  through t h e  p o i n t  - i;: 1 
q 

a x i s .  This  l i n e  i s  c a l l e d  t h e  Popov l i n e .  Condition (2-8) r e q u i r e s  t h a t  

t he  p l o t  of t h e  modified frequency response l i e  e n t i r e l y  i n  t h e  h a l f  plane 

t o  t h e  r i g h t  of t h e  Popov l i n e .  Thus t h e  geometric formulation of t h e  

V. M. Popov theorem is  as follows: 

I n  o rde r  t h a t  t he  system defined by Equations 2-1 t o  2-3 be 
a b s o l u t e l y  s t a b l e  i n  t h e  s e c t o r  [O, K] f o r  t h e  p r i n c i p a l  case, 
o r  i n  t h e  s e c t o r  (0, K ]  f o r  t h e  p a r t i c u l a r  cases, i t  i s  s u f f i -  
c i e n t  t h a t  t h e r e  e x i s t  i n  the W-plane a s t r a i g h t  l i n e ,  passing 
through t h e  p o i n t  on t h e  r e a l  a x i s  with a b s c i s s a  - such t h a t  
t h e  modified frequency response W ( j w )  l i e s  s t r i c t l v  t o  t h e  r i e h t  
of i t ,  and a d d i t i o n a l l y ,  t h a t  f o r  t he  p a r t i c u l a r  ca ses  t h e  condi- 
t i o n s  f o r  s t a b i l i t y - i n - t h e - l i m i t  be  s a t i g f i e d .  

E’ 
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Figure 2-2 i l l u s t r a t e s  t h e  geometric i n t e r p r e t a t i o n  of t he  Popov 

theorem. I n  t h e  example of Figure 2-2c, t h e  Popov l i n e  can be drawn 

through t h e  o r i g i n .  Thus t h e  s t a b i l i t y  s e c t o r  TO, K1 i nc ludes  the com- 

p l e t e  f i r s t  and t h i r d  quadrants. Figure 2-2d i l l u s t r a t e s  a case where 

t h e  s t a b i l i t y  s e c t o r  f o r  nonl inear  systems as found from t h e  Popov the- 

orem is  less than t h e  s t a b i l i t y  s e c t o r  f o r  l i n e a r  systems. 

I n  a p r a c t i c a l  system, i t  i s  reasonable t o  expect t h e  s lope  of 

the n o n l i n e a r i t y  t o  b e  l imi t ed .  

whether t h e  s t a b i l i t y  s e c t o r  of t h e  non l inea r  system can be increased by 

p l ac ing  r e s t r i c t i o n s  on t h e  slope of t h e  n o n l i n e a r i t y  i n  systems such as 

t h a t  i l l u s t r a t e d  by Figure 2-2d. This  problem has been i n v e s t i g a t e d  and 

c r i te r ia  developed f o r  extending t h e  s t a b i l i t y  s e c t o r  i n  such cases bv 

Yakubovich (1965a, 1965b), Brockett and W i l l e m s  (1965a, 1965b), Dewey 

and J u r y  (19661, and Dewev (1966). The r e s u l t s  of Dewey and J u r v  and 

Yakubovich are e s a e n t i a l l v  t h e  same although thev were obtained bv d i f -  

f e r e n t  approaches. Brockett and Wi l l ems ' r e su l t s  are  i n  a d i f f e r e n t  form 

and, though they appear t o  be more gene ra l ,  are not  as eas i lv  i n t e r p r e t e d .  

The ques t ion  t h e r e f o r e  ar ises  as t o  

Dewey's c r i t e r h n  is  given he re  i n  o r d e r  t o  i n d i c a t e  t h e  n a t u r e  

of t h e  r e s u l t s  obtained when r e s t r i c t i o n s  are placed on t h e  s lope  of t h e  

n o n l i n e a r i t y .  The r e s u l t s  reported i n  t h e  o t h e r  r e fe rences  have t h e  same 

gene ra l  form. Conditions 2-4 (or 2-5) and 2-6 s t i l l  apply along with t h e  

a d d i t i o n a l  r e s t r i c t i o n s  t h a t  

1. l f < u ) l  f M (2-9) 

df (6) 
< K2 2. -K1  < (2-10) 
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Figure 2-2a .  q > 0 .  Figure 2-2b .  q < 0 .  

Figure 2-2c .  Popov Line Goes Figure 2-2d .  The Popov S t a b i l i t y  

Through the  Or ig in .  K = 03 . Sector  i s  Less Than That f o r  a 

Linear  Gain. 

Figure 2 -2 .  

C r i t e r i o n  . 
I l l u s t r a t i o n s  of t h e  Geometric I n t e r p r e t a t i o n  of t he  Yopov 
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The restriction that F(o) be bounded is not required in the other 

napers. This restriction makes possible a simpler criterion. The theorem 

is as follows: 

Theorem: For the system shown in Figure 1, if there exists a 
finite number q such that for all WLO, 

a) 
2 2 

H(w) = Re[jwqC(jw)] + w c1 + (K2-K1)Re~(jw)-K1K21C(jw)l ,LO 
1 

b) G(jw)J - K, G ( O ) >  - E, 

then in the principal case, for all nonlinearitiee with slope 
restriction (-K 
states, the response is bounded on io,-) and tends to zero as 
t + 0 .  In the simplest particular case, the theorem remains 
true for all nonlinearities f(a) in the sector IC, K] such that 
f(a) -EU is bounded on (--, -) where E > O  is arbitrarilp small. 

K2) in the sector [O, K) and for all initial 1' 

Corollary 1: With the slope restriction f'> -1, condition a) 
becomes 

Re[jwqG(jw)] + w (RcC(jw)-KIIG(jw) I 1 L 0 .  

Corollary 2: 
becomes 

Re[ jwqC,(jw) I-w CRec(jw)+ K2)C(jL) I 

2 2 

With the slope restriction f'> K2, condition a) 

2 2 0. 

Corollary 3: 
becomes 

With the slope restriction (0, K2), condition a) 

2 1 Re[jwqG(jw)] + o (ReG(jw) + -12 0.  

Corollary 4: With the slope restriction f'> 0, condition a) 
be comes 

K2 

(2-11) 

(2-12) 

(2-1 3) 

(2-14) 

(2-15) 

(2-16) 

Remark: In the particular cases, inequalities 2-11, 2-13, and 
2-14 can only be satisfied for the simplest particular case. 
Inequalities 2-15 and 2-16 can be considered f o r  all the parti- 
cular cases. 

The Popov theorp has been extended to time-varving systems bv 

Rozenvasser (1963) for the principal case. In the time-varvine systems, 
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f(a) becomes f(a,t). The result is extended to the simplest particular 

case by Higgins (1966). The stability criterion is 

(2-9 1 1 ReG(jo) + E > 0. 

Of the stability theory presented hete, this dissertation makes 

use primarily of the V. M. Popov theorem and its extension to time- 

varying systems. The extensions of the Popov theory in which the slope 

of the nonlinearity is considered are used to indicate how the desim 

procedure might be modified in cases where more restrictions on the non- 

linearity can be tolerated. It i s  noted that in the Popov criterion and 

all its extensions, the object in the analysis is to determine the value 

of one or more constants vhich indicate the maximum stability sector for 

a given G ( s ) .  

must s a t i s f y  if the system is to be absolutely stable. In this disser- 

tation, the approach is to modify G(s) so that no constraints on the 

nonlinearity are required in order to s a t i s f y  the Popov criterion for 

absolute stability. 

This determines the constraints which the nonlinearity 



CHAPTER I11 

CLOSED LOOP DESIGN OF LINEAR SYSTEMS 
V I A  STATE VARIABLE FEEDBACK 

In t roduc t ion  

The purpose of t h i s  chapter  i s  t o  p re sen t  a method f o r  t h e  design 

of scalar  i n p u t ,  scalar ou tpu t ,  l i n e a r  c o n t r o l  systems v i a  t h e  s t a t e  

v a r i a b l e  feedback (SVF) method. F i r s t ,  t h e  procedure f o r  designing f o r  

a d e s i r e d  closed loop t r a n s f e r  func t ion  i s  presented.  This procedure is  

then used as t h e  b a s i s  f o r  developing a method f o r  designinR l i n e a r  gain 

i n s e n s i t i v e  systems which is extended t o  c e r t a i n  non l inea r  and/or  t i m e -  

varying systems i n  Chapter 4. 

The procedure f o r  designing f o r  a des i r ed  closed loop response 

is  formulated from t h e  matr ix  approach. Th i s  procedure i s  discussed i n  

d e t a i l  by Schul tz  (1966) from the s tandpoint  of the block diaaram. A i -  

though t h e  b l o c k  diagram approach i s  more f a m i l i a r  t o  many c o n t r o l  enei-  

n e e r s ,  t h e  matr ix  approach i s  more gene ra l  and does not  r e q u i r e  the  manip- 

u l a t i o n  of t he  block diaqram i n t o  any s p e c i a l  form. When t h e  svstem i s  

r ep resen ted  by a block diagram of t he  form assumed by Schul tz ,  t h e  two 

methods are equ iva len t .  

A f t e r  most of t h i s  chapter  w a s  w r i t t e n ,  i t  w a s  discovered by t h e  

au tho r  t h a t  Morgan (1963,  1966) has a l s o  proposed t h e  use of s ta te  vari- 

a b l e  feedback f o r  designing l inear  svstems t o  have a des i r ed  closed loop 

t r a n s f e r  func t ion .  H e  presents  t h e  ma t r ix  formulation f o r  t h e  design 

18 
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procedure,  bu t  t h e  approach i s  somewhat d i f f e r e n t  from t h a t  presented 

here .  

v a r i a b l e  feedback as c a l l e d  f o r  by modern c o n t r o l  theory and series com- 

pensat ion as p rac t i ced  i n  c l a a s i c a l  c o n t r o l  theory,  therebv combining 

t h e  advantages of t h e  two and inc reas ing  t h e  v e r s a t i l i t v  of t h e  desiRn 

procedure. While s ta te  v a r i a b l e  feedback alone can chanqe n e i t h e r  t h e  

o r d e r  of t h e  system nor  the  l o c a t i o n  of t h e  ze ros ,  t h e  method developed 

h e r e  can do both.  

The procedure presented he re  provides  f o r  a combination of s t a t e  

The design procedure makes use of t h e  f a c t  t h a t  t h e  closed loop 

p o l e s  of a l i n e a r  system may be forced t o  occur anywhere i n  t h e  s-plane 

by feeding back a l l  t h e  s ta te  v a r i a b l e s  i n  the  proper l i n e a r  combination 

(Brockett ,  1965). The requirement t h a t  a l l  t h e  s t a t e  v a r i a b l e s  b e  f ed  

back i n d i c a t e s  t h a t  t he  s t a t e  v a r i a b l e s  should be chosen t o  ag ree  with 

a c t u a l  phys i ca l  v a r i a b l e s .  When i t  is  no t  p o s s i b l e ,  o r  p r a c t i c a l ,  t o  

feed back a l l  t he  s ta te  v a r i a b l e s ,  t h e  ca l cu la t ed  va lues  of t he  feedback 

c o e f f i c i e n t s  can be used t o  determine s u i t a b l e  minor loop compensation. 

When only t h e  output  can be fed back, t h e  r e s u l t i n g  c o n f i w r a t i o n  is 

similar t o  t h a t  obtained by the Cuillemin procedure (Truxal, 1955). 

The SVF method i s  a systematic ,  completely a n a l y t i c  d e s i m  

procedure i n  which t h e  a n a l y t i c a l  work is  r e l a t i v e l y  simple, r e q u i r i n a  

t h e  s o l u t i o n  of n l i n e a r  a lgeb ra i c  equat ions,  where n i s  t h e  o rde r  of  

t h e  system. It d i f f e r s  i n  bas i c  philosophy from both t h e  c lass ica l  and 

modem design procedures which are i n  common use.  

i n  t h e  c lass ica l  approach t o  t h e  design of l i n e a r  c o n t r o l  systems is t o  

modify t h e  open loop system i n  such a way t h a t  when t h e  loop is closed 

The common practice 
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the performance is satisfactory. That is, the system is comDensated 

with a view towards realizing certain open loop characteristics which, 

in general, lead to desirable closed loop performance. Among the ex- 

tensive literature on this subject are the books by Rower and Schultheiss 

(1958) and D'AZZO and Houpis (1960). In the SVF method, the svstem is 

compensated so as t o  realize a desired closed loop transfer function 

which is determined from the performance specifications. Since, ulti- 

mately, desirable closed loop response is the goal of the designer, a 

method of designing for desired closed loop characteristics provides an 

advantage over one of designing for desired open loop characteristics. 

Although the motivation for the SVF method of design stems from 

a result of modern control theory, the approach is quite different. In 

the matrix formulation of modern control theory, a system is represented 

by a set of equations as follows: 

+ = Ax L L  + pl 
T y " f ' c  

(3-1) 

< 3-2 ) 
Here x is an n-dimensional state vector, $ is an (n x n) plant matrix, -. 
y is the scalar output, c L is an n-dimensional output vector, b is an ,. 
n-dimensional control vector, and u is a scalar control. In the optimum 

control problem the design is based on minimizing a quadratic perform- 

ance index of the form 
OD ca 

(3-3) 2 
V(x) = (x Ox + pu )dt = I, 

The well h o r n  solution to this problem (Kalman, 1 9 6 4 )  is that the optimal 

control is 
T u=-&c. ( 3 - 4 )  
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That i s ,  t h e  optimal c o n t r o l  c o n s i s t s  of a l i n e a r  combination of a l l  the 

s t a t e  v a r i a b l e s .  

reduced Y a t r i x  R i c a t t i  equation, 

This l i n e a r  combination may be found by solvine. t h e  

T -1 T T A R  + R A - R b p  b R  + r r  " 0 ;  - -0  -0 -  -0- - -0 - -  
k i s  then found from k = Rob. 

t i o n  q u i t e  d i f f e r e n t  from t h a t  of t h e  c lass ical  method of s e r f e s  compen- 

s a t i o n  with u n i t y  feedback from t h e  output.  I n  f a c t ,  u s i n e  t h e  frequency 

domain c r i t e r i o n  f o r  op t ima l i ty  as developed by Kalman (1964), i t  can be 

shown t h a t  very few systems designed bv t h e  classical  method are optimal 

f o r  any q u a d r a t i c  performance index. Systems desietned by t h e  SVF method 

may or  may no t  s a t i s f y  thris c r i t e r i o n .  This is  discussed f u r t h e r  i n  t h e  

s e c t i o n  on ga in  i n s e m i t i v e  systems. 

This r e s u l t  suggests  a system configura- - - - -  

A major d i f f i c u l t y  i n  the optimum c o n t r o l  approach t o  desiRn 

arises from t h e  l a c k  of s u i t a b l e  c r i t e r i a  f o r  spec i fy ine  t h e  performance 

index. 

by Equation 3 - 4 ,  bu t  t h e  design c r i t e r i a  i s  a des i r ed  closed loop t r ans -  

f e r  func t ion  r a t h e r  than a performance index. 

The SVF method makes use of t h e  system conf igu ra t ion  sueeested 

The system configurat ion r e s u l t i n g  from SVF design i s  i l l u s t r a t e d  

i n  Figure 3-la. G (9) r ep resen t s  t h e  p l a n t  t o  be controll-ed,  C, !s) t h e  

series compensation, and K an unspecif ied l i n e a r  Rain. G(s) i s  def ined 

as G(s) = Gc(s)G ( 8 )  and KG(s) is t h e  forward t r a n s f e r  func t ion .  Since 

i t  is u s u a l l y  d e s i r a b l e  t h a t  kl = 1 i n  o r d e r  t h a t  t h e  output  w i l l  follow 

t h e  i n p u t  with as s m a l l  a s teadv s t a t e  e r r o r  as p o s s i b l e ,  t h i s  value is 

used throughout t h i s  d i s s e r t a t i o n .  The loss of t h i s  v a r i a b l e  parameter 

i s  compensated f o r  by providinq t h e  unspecif ied gain,  K ,  precedinp: C ( s ) .  

P C 

P 
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Since the SVF method requires  t h a t  t h e  s t a t e  v a r i a b l e s  correspond 

t o  a c t u a l  phys i ca l  v a r i a b l e s  which can be  measured and fed back, i t  some- 

times happens t h a t  a term involving 6 must be included i n  Equation 3-1. 

For example, i n  Figure 3-lb, gn = A x  + aKu + KG, and Equation 3-1 becomes n 

(3-5a) 

o r  

% = Ax - -  + Bu, - -  (3-Sb) 

where 

w i t h  b - and d - n-dimensional vec to r s  and 

U 7  

Systems represented by Equation 3-1 w i l l  be r e f e r r e d  t o  i n  t h i s  d i s s e r -  

t a t i o n  as Class I and those represented by Equation 3-5a or  3-5b as 
w 

Ciass 11. 

The remainder of t h i s  chap te r  i s  arranged i n  the following 

o rde r :  

1. The ma t r ix  formulation of SVF design i s  developed. 

2 .  A design procedure f o r  gain i n s e n s i t i v e  systems i s  developed. 

3 .  The procedure t o  be followed when a l l  t h e  s t a t e  v a r i a b l e s  

cannot be f ed  back i s  discussed.  

4 .  The r e s u l t s  a r e  summarized. 
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The SVF Method - ,Ma t r ix  Formulation 

The genera l  procedure is developed on the  b a s i s  of Class I1 

systems s i n c e  the  r e s u l t s  can e a s i l y  be extended t o  Class I systems bv 

l e t t i n g  + = 0. 

From Figure 3-lb, 

u = -& T 5 + r. 
(3-6) 

This i s  t h e  same as Equation 3-4 except  f o r  t he  term r ,  which r ep resen t s  

t h e  s c a l a r  input  t o  t h e  c losed  loop system. S u b s t i t u t i n g  Equation 3-6 

i n t o  Equation 3-5a, transforming, and so lv ing  f o r  X ( s )  gives - 
X(s)  = [a! + dk T s-(A-bkT)]-'(5 + d S ) R ( s ) .  - -  - -.* (3-7) 

This is combined with Equation 3-2 t o  g ive  the  closed loop t r a n s f e r  

func t ion  i n  terms of f a c t o r s  of t h e  form Kki (From FiRure 3-1, i t  i s  

ev ident  t h a t  K is a f a c t o r  i n  each element of and cj ) .  

(3-8) 

This  t r a n s f e r  func t ion  can now be compared wi th  t h e  d e s i r e d  t r a n s f e r  

func t ion ,  and t h e  n a l g e b r a i c  equat ions t h a t  r e s u l t  from equa t ine  cor- 

responding c o e f f i c i e n t s  of s can be solved f o r  t h e  Kk With t h e  pre- 

v ious  assumption t h a t  kl - 1, K and t h e  o t h e r  ki can then be found. 

Actua l ly ,  on ly  the  denominators of t h e  two t r a n s f e r  func t ions  need t o  

be compared i n  order  t o  determine the k and K ,  a s  state  v a r i a b l e  feed- 

back does not  a f f e c t  t he  zeros  of t h e  t r a n s f e r  func t ion!  i . e . ,  t h e  zeros  

of t h e  closed loop t r a n s f e r  func t ion  a r e  t h e  same as t h e  zeros  of t h e  

open loop t r a n s f e r  func t ion .  This can be shown from t h e  equiva len t  

system of Figure 3-lc. The expression f o r  t h e  eouiva len t  feedback 

1' 

i 
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transfer function, H ( s ) ,  is derived in the section on gain insensitive 

systems, and it is shown there that the Doles of H (6) are al.so zeros 
eq 

eq 
of C ( s ) .  Thus the zeros of the  closed 

KC(s) 
= l+KG(s)H (s) ’  

eq 

must be the same as the zeros of G ( s ) .  

loop transfer functjon, 

.. 
If the numerator of C(s) is not 

Y equal to the numerator of the desired $s), series compensation is neces- 

sary to make the two compatible. 

not necessary is called the simplest case, and the case where series 

The case where series compensation is 

compensation is required is called the eeneral caee.  

If G(s) is not known, the numerator must be found in order to 

compare it with the numerator of the desired closed loop transfer func- 

=. Transforming Equations 3-2 and tion. From Figure 3-1, KC(s) - 
3-5, combining, and solving for 

U(S) 

u(s) gives 

This can be written in the form 

where p(s) is the matrix [SI-A] . . . I  and pa(s) is the adjoint of ?(SI. 
the adjoint has no poles (only positive powers of 8 occur in the matrix), 

it follows that the poles of the transfer function must be zeros of det 

Since 

?(SI. 
of the determinant may be cancelled by zeros in the numerator. 

The converse does not necessarily hold, since one or more zeros 

The 

necessary and sufficient conditione that the converse hold are that the 

system be both controllable and observable (Brockett, 1 9 6 5 ) .  It is not 
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a usually necessary t o  f i n d  a l l  t h e  elements of P (3) i n  o rde r  t o  determine 

t h e  numerator of G ( s ) .  

- 
For example, i f  t he  non-zero elements of $ are 

designated c and the  non-zero elements of (z are d e s i m a t e d  d the  onlv 

elements of t h e  a d j o i n t  matrix t h a t  a f f e c t  t h e  numerator of G ( s )  are t h e  
i j' 

elements i n  t h e  ith rows and the jth columns. I n  systems where y = xl, 

t he  only non-zero element of c i s  c Therefore!no elements i n  any row 1' 

o t h e r  than t h e  f i r s t  a f f e c t  t h e  numerator of G(s). I f  i t  i s  d e s i r a b l e  t o  

determine the  complete inverse matr ix ,  t h e  Leve r r i e r  a lgori thm 

(Gantmacher, 1959) provides an o r d e r l y  procedure f o r  t h e  simultaneous 

computation of t h e  c o e f f i c i e n t s  of t h e  c h a r a c t e r i s t i c  polynomial and t h e  

a d j o i n t  matr ix ,  and i s  adaptable  t o  machine computation. 

Equation 3-8 i s  now w r i t t e n  i n  the  form 

(3-11) 

T T a where i s  the ma t r ix  [s (z  + @ ) - (4 - bk ) I  and F (s )  is  the  a d j o i n t  

of Ek(s). 

i n a t o r  of Equation 3-11 m u s t  b e  determined i n  o r d e r  t o  f i n d  -(SI i n  terms 

of the ki and K,  and t h i s  is equal t o  d e t  Fk(s) .  

-K 

Assuming t h a t  t h e  numerator of G(s) i s  known, only t h e  denom- 

Y 
R 

The above d i scuss ion  i n d i c a t e s  t h e  general  procedure of SVF 

desiEn. Before o u t l i n i n g  t h e  s p e c i f i c  procedure i t  i s  shown t h a t  t h e  

a l g e b r a i c  equat ions which must b e  solved f o r  t h e  Kk are always l i nea r .  

The proof makes use of t he  following theorem (Nering, 1963): 

i 

I f  A '  i s  t h e  ma t r ix  obtained from A by adding a m u l t i p l e  of 
one row ( o r  column) t o  another,  then d e t  A' = de t  A .  
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Since K i s  a f a c t o r  of t h e  elements of both b and d ,  t hese  v e c t o r s  are 

w r i t t e n  as 

- - 

- 
bl 

b - :  

b 
- 

n Kb' n 

The ma t r ix  of Equation 3-8 has t h e  form 

c 1 7  -l 

is(l+Kk d')-all+Kk b ' l  lsKk d'-a +Kk b '  I 1 1  1 1  1 2 1  1 2  2 1 1  

IKk d's-a21+Kklb; 1 s(l+Kk d')-a22+Kk b '  
1 2  I 2 2  2 21 

L A I -  -I 

jKk d'  s-a +KklbA I 1 Kk2dAs-an2+Kk2bA 1 - 1 n nl 
L -.i L -4 

- 

... 

... 

r 

Kkn d -a 2n+Kknb 1 

i s ( l+KkndA) -ann+Kknbnj J 
L 

- 

where t h e  a are t h e  elements of t h e  A matrix.  

s d i  + b; 

Now t h e  nth row 
t l  

i s  sub t r ac t ed  from the  f i r s t  row. I f  6 = 0 
i j  by sd' + bA 

n 

f o r  i p j and 1 f o r  i = j ,  then t h e  j t h  element of t h e  f i r s t  row i s  

given by t h e  fol lowing expression: 

t h  
This  process  is  repeated f o r  each of t h e  f i r s t  (n-1) rows, w i th  t h e  n 
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sd; + b; 
t h  row mul t ip l i ed  by sd,: + b:, being s u b t r a c t e d  from the  i row. Then the  

t h  j th element of t h e  i row is  Riven by t h e  following expression:  

sd; + b; sd; + b; 
L i j  - " n j  sd; + b i  - a i j  + anj  sd; + b; (3-12) 1 

According t o  t h e  above theorem, t h e  determinant is  no t  changed by t h e s e  

ope ra t ions .  Since Kk is  no t  a f a c t o r  i n  the  terms of Equation 3-12, i t  

follows t h a t  t h e  f a c t o r s  Kk 

i 

appear only i n  t h e  nth row of t h e  new matr ix .  i 

Thus t h e  determinant contains  only f i r s t  o rde r  terms i n  t h e  Kk and has 

the  form 
i 

(Kkl , Kk,) sn-' -+ ' +f (Kkl , , Kk,) s + fn - l  (3-1 3) 

where the  func t ions  fo,-**,f are l inear  i n  t h e  Kk n t' 
of t h e  des i r ed  closed loop t r a n s f e r  func t ion  can be w r i t t e n  i n  t h e  form, 

The denominator 

sn-l +' -+ P s + Po. n 
P ( s>  = s + Pn-l 1 (3-14) 

Equating corresponding c o e f f i c i e n t s  of  Equations 3-13 and 3-14 Rives a 

set o f n l i n e a r  a l g e b r a i c  equations which are l i n e a r  i n  Kki and can b e  

solved f o r  K and k (k 

so  only n unknowns occur i n  the n equat ions) .  

i s  usua l ly  set equal  t o  uni ty  as noted p rev ious ly ,  - 1  

I n  t h e  general  case,  i t  is  n o t  r equ i r ed  t h a t  t he  numerators of 

G (s )  and ~ ( s )  be  compatible, al though -(s) R may never have a Dole-zero 

excess less than t h a t  of C (s), as t h i s  would r e q u i r e  a compensator i n  

which the  numerator is of higher o rde r  than t h e  denominator. 

Y Y 
P 

P 
Series 
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compensation is used i n  add i t ion  t o  s ta te  v a r i a b l e  feedback i n  o r d e r  t o  

realize t h e  d e s i r e d  response. This u sua l ly  means adding pole-zero p a i r s ,  

w i th  t h e  zeros  being r equ i r ed  t o  shape t h e  closed loop frequency response 

curve o r  t o  provide t h e  required v e l o c i t y  e r r o r  c o e f f i c i e n t  (Truxal,  

1955). 

The zeros of  t h e  compensator are assumed t o  be  known s i n c e ,  

Y 
u n l e s s  they cancel  a po le  i n  G (s), they w i l l  a l s o  be zeros  of ,(SI. 

Each pole-zero p a i r  i n c r e a s e s  the o rde r  of t h e  system, except i n  those 

cases where poles  o r  zeros  are cancel led,  and t h e  number of s t a t e  

v a r i a b l e s  by one. This means t h a t  each pole-zero p a i r  adds two new 

parameters ,  the p o l e  l o c a t i o n  and t h e  feedback c o e f f i c i e n t .  One of 

t h e s e  must be  chosen a r b i t r a r i l y  and t h e  o t h e r  determined along with 

t h e  o t h e r  ki. 

series compensator r e s u l t s ,  and t h e  l o c a t i o n s  of t h e  poles  must be 

determined along with t h e  value of t h e  non-zero k 

l o c a t i o n s  are chosen, t he  a d d i t i o n a l  feedback c o e f f i c i e n t s  must be 

determined along wi th  t h e  feedback c o e f f i c i e n t s  froin the or ig i sa l  q s t e m .  

On t h e  b a s i s  of t h e  above d i scuss ion ,  t h e  following design 

P 

I f  t h e  new feedback c o e f f i c i e n t s  are chosen t o  be  zero,  a 

I f  t h e  po le  i' 

procedures are suggested: 

The Simplest  Case 

1. Describe t h e  system i n  terms of meaningful, phys i ca l  s ta te  

v a r i a b l e s  and assume t h e s e  are a l l  a v a i l a b l e  and are f e d  

back through constant  gain elements. 

Choose t h e  des i r ed  closed loop response,  ,(SI. Y 
2.  

3. From EQUatiOn 3-8, f i n d  Y (e) i n  terms of K and t h e  ki. 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

30 
Y 
R 

4 .  Equate t h e  expressions f o r  t he  denominator of -(s) from 

s t e p s  2 and 3 and solve f o r  K and the  k by equat ing  l i k e  

powers of s .  

i 

5. Use t h e  known values of t h e  system parameters t o  r e a l i z e  a 

f i n a l  system configurat ion.  I f  a l l  t h e  s t a t e  v a r i a b l e s  are 

no t  a v a i l a b l e  t o  feed back, use the  ca l cu la t ed  va lues  of k 

t o  determine s u i t a b l e  minor loop compensation. 

The General Case 

1. Same as s t e p  1 of the s imples t  case.  

2. Same as s t e p  2 of  the s imples t  case. 

3. Add a s u f f i c i e n t  number of pole-zero p a i r s  t o  make G ( s )  = 

Y 
G c ( s ) G  (s) compatible with the  des i r ed  ~(3). 

number added i s  p. 

Assume t h e  
P 

4 .  Choose p a r b i t r a r y  pole  and/or feedback c o e f f i c i e n t s  

a s soc ia t ed  wi th  the p new s ta te  v a r i a b l e s  introduced.  

5 .  Same as s t e p  3 f o r  t h e  s imples t  case. 

6 .  Eqiiate t h e  expressions f o r  the denominator of -(SI from s t e p s  

2 and 5 and so lve  fo r  K and t h e  k by equat ing  l i k e  powers 

of 9. 

Y, 
R 

i 

7. Same as s t e p  5 f o r  t he  s imples t  case. 

The fol lowing examples i l l u s t r a t e  t h e  design procedures.  Example 

3-1 rep resen t s  t he  s imples t  case of a Class I system. Example 3-2 

r ep resen t s  t he  genera l  case of a Class I1 system. 

Example 3-1: I n  Figure 3-la, l e t  C: (s)  = 1, and assume t h a t  t h e  system 

i s  represented  by t h e  set  of d i f f e r e n t i a l  equat ions  

C 
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k1 = x2 

2, =-x2 + 2x3 

ir = -4x  + 5Ku 

T u = - k x + r  
T y = c x  

3 3 

5 -  

= x1 - 5  

kl = 1. 

Comparing t h i s  with Equation 3-1 y i e lds  

0 1 0  

A =  - 
0 - 4  

l l  
: =  0 O I  

J. 

Y The des ired $s) is chosen as 

Y 260 = 260 (3-15) 
$ 5 )  = 

(s2 + 4s + 13)(s + 20) s3  + 24s2 + 93s + 260 

From the A matrix and the b vector,  the matrix of Equation 3-8 is found - .., 

to be 

-1 0 

s + l  -2 
r s  
l o  
I 1 .  1 5K 5Kk2 s + 4 + 5 Kk3 

I I- - 

Substituting t h i s  matrix and the  ! and s vectors into  Equation 3-11 with 

$ = gives 

10K 
- 3  s +(5+5Kk3)s 2 +(4+5Kk3+10Kk2)s+10K 

(3-16) 
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Equating Equation 3-16 t o  t h e  des i r ed  t r a n s f e r  funct ion of Equation 3-15 

gives  t h e  following set  of l i n e a r  a l g e b r a i c  equat ions:  

10K = 260 

5+5Kk3 = 24 

4+5Kk3+10Kk2 = 93. 

These equat ions can be  solveir f o r  Kki, giving 

K = 26 

19 Kk3 = 5 

Kk2 = 7. 

These equat ions are e a s i l y  solved f o r  t h e  proper set of feedback coe f f i -  

c i e n t s  t o  give t h e  d e s i r e d  closed loop t r a n s f e r  funct ion.  The r e s u l t  is 

given below: 

K = 26 

k2 =I 0.269 

k, = 0.146. 
d 

Example 3-2: Assume t h a t  t h e  system t o  be  c o n t r o l l e d  is represented by 

t h e  equations.  

icl = x2 

ic 2 = -2x2+u 

T u = -k xsr 
T 
- 4  

Y " $ X ' X 1  

kl = 1. 

For t h i s  system, 
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(3-17) 
0 :+*I 
- - A 

It i s  assumed t h a t  t h e  des i r ed  closed loop t r a n s f e r  funct ion is  

Y 5 (s+4) 
R(S) = 2 

(6 +2s+2) (s+10) 

The r e a l i z a t i o n  of t h i s  des i r ed  t r a n s f e r  func t ion  r e q u i r e s ,  i n  a d d i t i o n  

t o  s ta te  v a r i a b l e  feedback, a compensator of t h e  form as shown i n  

Figure 3-2a with t h e  value of e i t h e r  a o r  t h e  feedback c o e f f i c i e n t  k3 t o  

b e  chosen a r b i t r a r i l y .  I f  a i s  chosen t o  be 10, t h e  system equat ions 

become 

S+a 

5 = x  1 2  

k2 = -2x +x 2 3  

k3 = -l0x3+4ku+k; 

T u = -k fir 
“ 5  

T 

1 y = = x 

kl = 1. 

Comparing these  equat ions with Equation 3-5 le3ds  t o  

b =  

1 

.. 

0 7  

“ I d =  0 c =  “ 1  0 

o i  

From t h e  A matrix and t h e  b and d v e c t o r s ,  t h e  ma t r ix  of Equation 3-8 

is  found t o  be  

“ 5 5 
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Figure 3-2a. The Plant of Example 3-2 with S e r i e s  Compensation. 

i 

1 y = x  
Gp(S)  . K s + 4  x3 

s + 10 
w 

-[ k3 I 
-p2 1 

Figure 3-2b.  Method of Controlling the Plant of Example 3-2. 
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Substituting t h i s  matrix and vectors b ,  c ,  and d into  Equation 3-11 gives - - .  -. 

(3-19) Y K (s+4) 
,(SI = (l+Kk3)s 3 +(12+6Kk3+Kk2)s 2 +(20+8Kk3+4Kk2+K)s+4K 

Equating Equation 3-19 t o  the desired transfer function of Equation 3-18 

gives 

4 K  - = 20 1+Kk3 

1 2+6Kk3+Kk2 
= 12. 1+Kk3 

The so lut ion t o  t h i s  set of equations i s  

K =  4. 

This completes the design procedure. The f i n a l  system configuration is  

shown i n  Figure 3-2b. 
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Applicat ions i n  Nuclear Reactor Control Sys t em Design 

I n  t h i s  s e c t i o n  several examples of t h e  a p p l i c a t i o n  of s t a t e  v a r i a b l e  

feedback design t o  r e a c t o r  con t ro l  a r e  presented.  

method makes use of a l l  the s y s t e m  v a r i a b l e s ,  i t  i s  p a r t i c u l a r l y  amenable 

t o  the  c o n t r o l  of  mult i region r e a c t o r s  as w e l l  as s i n g l e  region models. 

With the  recent emphasis on s p a c i a l  k i n e t i c s ,  t h i s  method of c o n t r o l  i s  

apropos. 

Two Temperature Region Reactor 

Since t h i s  new design 

The block diagram for the l i n e a r  two-temperature region r e a c t o r  with 

s t a t e  v a r i a b l e  feedback c o n t r o l  and neg lec t ing  delayed neutrons,  i s  shown 

i n  Fig. 3.3 where 

a =  i 

ki = 

K =  

Ki = 

a =  i 

x1 = 

x2 
=: 

x =  3 

- 
x4 - 

B12 - 

B 2 1  

- 

a 

Y '  

h e a t  removal c o e f f i c i e n t s  of ith region 

feedback c o e f f i c i e n t s  

gain constant  of  c o n t r o l l e r  

p r o p o r t i o n a l i t y  cons t an t  between power and 

t h  temperature of t he  i region 

temperature c o e f f i c i e n t  of 

ith region 

neutron densi ty  o r  power 

temperature i n  region 1 

temperature i n  region 2 

r e a c t i v i t y  o f  t h e  

r e a c t i v i t y  input  from c o n t r o l l e r  

temperature coupline, c o e f f i c i e n t  from region 1 t o  2 

temperature coupling c o e f f i c i e n t  f rom region 2 t o  1 

r e c i p r o c a l  of t h e  c o n t r o l l e r  tize cons tan t  
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Figure 3 . 3  Block Diagram of Two Temperature Region Reactor 
w i t h  State Variable Feedback Control 

I 
I 
I 
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I 

1 

n = steady s ta te  neutron density or power 
0 

T = ef fect ive  neutron generation t i m e  

The d i f f erent ia l  equations defining the system are 

-n n n 
0 0 0 a x  - -  u x  + -  = -  % T 1 2  T 2 3  T x 4  

i 2 = K x - a ( x  1 1  

k3 = K x -a (B 

1 2  + R  2 1 3  x )  

x + x3) 2 1  2 1 2 2  

ir4 = -YX + KU 4 

Referring to  the equations above, the terms i n  Eq.  (3-8) are given by 

- 
0 

0 
b =  

0 

where d = 0 .  

Then 

T [SI-A-bh ] = - - -.. 

-n 
0 - 

T a1 

1 -a 

-a B 2 12 

0 

K - 

n - ' a  
' t . 1  

1 s+a 

a2B12 

%2 

- 
-n n 

0 

T "2 T 
- 0 - 

-a B 0 

0 

1 21 

2 -a 

kT = kl k2 k3 k4 

n - ' a  
' t . 2  

a B  1 21 

2 s+a 

Kk3 

0 

s+y+K k 4 

= F  .. 
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Letting the co-factors of F be F and the determinate of F be det F, the 

inverse of F is 
ij .. -, 

I 

and Eq. (3-8) becomes 

%d. P cTF-\ 
R(s )  - ., - 

After some matrix algebra, the transfer function for the case in point is 

m=- KF41 
R ( s )  det F 

and in terms of the 

and 

sys tern parameters 

n 0 2  - - [s +(a +a )s+ala2(l-B B ) ]  F41 T 1 2  12 21 

det p = s4(al+a2+y+k4K)s 3 +[ (al+a2) (y+Kkq)+ala2(1-B12B21) + K2a2no 

n 
2 0 

‘I T 12 21 T 

K u n  n 
+ klK]8 +{ala2(y+k4K)(1-B B ) + - [-aialB21K2 + 

n 
T 1 1 2 1 2  2 1 2 1  2 2 1  1 1 2  + A{ [-a a B K -u B K +K a a +K a a ](rck4K)+Klk3Ka2B12+klKa1a2 

+a B K k K+klK(a1a2)B12B21+K1k2Ka2+K2k3Kal) 1 2 1 2 2  

As in the previous example it is seen that the zeroes of the system transfer 

function are independent of k 

ki. 

by selecting proper values for the feedback coefficients k 

while the pole locations are a function of i’ 

Therefore the form of the system time response can be chosen at will 

i’ 
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Example 3-3: As an example, consider  a system t h a t  has the  following 

cons t an t s  . 
-5 K = 2x10 degrees/watt  sec 5 

1 n = 10 watts 
0 

-1 
y = 10 sec K2 = degrees/watt  sec 

-1 a = 0.01 s e c  K = 1.0 

a2 = 0.05 sec 

1 

-1 
T = 0.1 sec 

a = per  degree B12 =: -0.2 

u2 = 10 pe r  degree B21 = -1.0 

1 

-4 

For these  va lues  of t he  system parameter 

= 10 6 2  (s + 0 . 0 6 ~ + 4 ~ 1 0 - ~ )  
F4 1 

Therefore t h e  system has two zeroes c l o s e  t o  the  o r i g i n .  Suppose t h a t  t he  

des i r ed  dynamics of t he  system i s  Riven by t h e  second o r d e r  t r a n s f e r  func t ion  

l o 6  [q d = s2+20s+200 

which has  well-behaved t r a n s i e n t  c h a r a c t e r i s t i c s  with a dampeninR r a t i o  of  

0.707 and d e s i r a b l e  frequency response. 

c h a r a c t e r i s t i c s ,  Eq. 3-8 must equal 

To rea l ize  t h e s e  d e s i r e d  system 

10 6 2  (s + 0 . 0 6 ~ + 4 ~ 1 0 - ~ )  

R(s)  (s2+20s+200) (s 2 +o.O6~+4xlO-~) 

o r  

+0.06~+4~10-~) 
2 +201s +12s+0.08 

Equating t h e  c o e f f i c i e n t s  of l i k e  powers of s i n  t h e  denominator of  t h e  

equat ion above t o  d e t  F and so lv ing  t h e  r e s u l t a n t  l i n e a r  a lRehra i c  simul- 

taneous Eqs. f o r  ki y i e l d s  

5 
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kl = +1.98x10 

k, = -0.02 
‘- 

4 3  

Figures  3 . 4  and 3.5 give t h e  response of 

k3  -0.002 

k4 = +10.0 

t h e  system v a r i a b l e s  t o  a s teo 

demand i n  power. From t h e  response curve of xl, i t  is seen t h a t  t h e  t r ans -  

ient response behavior corresponds e x a c t l y  t o  t h a t  expected from the  d e s i r e d  

system t r a n s f e r  funct ion.  Further  from s imula t ion  s t u d i e s ,  v a r i a t i o n s  i n  

t h e  feedback c o e f f i c i e n t s  k 

v a r i a b l e s ,  had v i r t u a l l y  no e f f e c t  on t h e  system dynamics. 

and k correspondinR t o  t h e  temperature s t a t e  2 3 

Neglecting t h e s e  

two feedbacks e s s e n t i a l l y  d i d  n o t  a l t e r  t h e  s t e p  response. 

i n  t he  c o n t r o l  rod p o s i t i o n  feedback c o e f f i c i e n t  had no n o t i c e a b l e  e f f e c t  on 

A f. 20% change 

t h e  t r a n s i e n t  response. S e t t i n g  t h i s  feedback cons t an t  equal t o  zero gave a 

t r a n s i e n t  response with a damping r a t i o  of about 0.25. Changes i n  t h e  s t eady  

s ta te  power level r e s u l t i n g  from a s t e p  demand i n  power were sensitive t o  

v a r i a t i o n s  i n  k 

decreased, t h e  s teady state power level inc reased  and the system became more 

the ou tpu t  s ta te  v a r i a b l e  feedback c o e f f i c i e n t .  A s  kl 1’ 

damped. For i n c r e a s i n g  va lues  of kl the s t eady  s ta te  power level decreased 

and t h e  system became less damped. From t h e  above i t  can be concluded t h a t  

bbr t h e  case i n  p o i n t  only t h e  two feedback c o e f f i c i e n t s  kl and k 

c a n t  i n  determining t h e  system dynamics. 

are s i g n i f i -  4 

Coupled Core Reactors 

Another good i l l u s t r a t i o n  of the a p p l i c a t i o n  of  t h i s  new design technique 

is the  c o n t r o l  of a coupled core r e a c t o r ,  a block diagram of which, along 

wi th  the feedback c o e f f i c i e n t s ,  i s  shown i n  Fig. 3.6 .  For convenience, 

delayed neu t rons  have been neglected,  and t h e  cores  are assumed t o  b e  i d e n t i c a l  

w i t h  t h e  same neutron coupling c o e f f i c i e n t .  I n  this model t h e  symbols are as 

denoted i n  t h e  previous example except 



r 

I I 

I 1 

I * 3  
D s+ 

I K !  I 
1 7  

n 

Figure 3 . 6  Block Diagram of Coupled Core Reactor 
with State Variable Feedback Control 
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x = neutron dens i ty  o r  power i n  core  1 1 

x2 = temperature i n  core  1 

x3 = neutron dens i ty  o r  power i n  core  2 

x4 = temperature i n  core  2 

D = neutron coupling c o e f f i c i e n t  

y = t o t a l  neutron dens i ty  o r  power of combined cores  

x5 = r e a c t i v i t y  i n p u t  from c o n t r o l l e r  

The d i f f e r e n t i a l  equat ions  f o r  t h i s  system a r e  

i 

7 

I n  t h i s  example 

rn 

[SI-A-bkl] - I - -  = 

i 

an  n 
j, = - -  D D - -  0 x + - x  0 1 T X 1 + T X 3  T 2 T 5 

G2 = Klxl-ax2 

an D 0 x 3 + - x  - -  2 3 = - -  T T I  T x4 
D 

k4 = K1x3-ax4 

?5 = -YX +Ku 5 

g = x + x  1 3  

an 
0 - 

T 
s s  

T 

s+a 1 -K 

-Dn 
0 0 - 

T 

0 0 

Kkl Kk2 

-D - 
7 

0 

D 
S4- 

T 

-K1 

Kk3 

n 
0 - -  0 
T 

0 0 

an 
0 0 - 

T 

s+a 0 

Kk4 s+y+Kk 

= F  -. 
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and the  c losed  loop 

where aga in  F are 

of F. 
i j  

- 

t r a n s f e r  function i s  

t h e  co-factors of F and d e t  F denotes the  determinate  
5 - 

Example 3-4:  To demonstrate the above, assume t h e  following va lues  

f o r  t h e  system parameters 

K1 = degrees/watt  sec 5 n = 10 w a t t s  
0 

a = sec-l T = 0.1 sec 

a = 10- p e r  degree 3 D = 10- 3 

y = IO sec- l  K = 1.0 

and s p e c i f y  t h e  same system t r a n s f e r  func t ion  as i n  t h e  previous example. 

To r e a l i z e  t h i s  d e s i r e d  system t r a n s f e r  func t ion  Eq. (3-8) must equal  

6 2 m, 10 (s+O. 01) (s +10r)Os+10) 
2 2 R(s) (s+O.Ol) ( 8  +10OOs+10) (s +20s+200) 

-. 1 roilowing the s a m e  procedure as before  equat ing t h e  c o e f f i c i e n t s  of iiice 

powers of s i n  t h e  denominator of the equat ion above t o  t h e  corresponding 

c o e f f i c i e n t s  of powers of s i n  the  denominator.of d e t  F and s o l v i n g  t h e  

l i n e a r  a l g e b r a i c  simultaneous equations thus  formed, t h e  va lues  f o r  k are 

determined. 

- 
i 

k3 = +2 X -4  kl = +2 X 10 

k4 = -1.92 X -2 k2 = -2 X 10 

k5 = +10 

Figure 3 . 7  shows t h e  response of the system t o  a s t e p  demand i n  power f o r  

a coupl ing c o e f f i c i e n t  D = 0.001, 0.01, and 0.1. As i n d i c a t e d  i n  t h e  f i g u r e ,  
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t h e  des i r ed  system response y ( t )  is i n s e n s i t i v e  t o  changes i n  D. 

t h e  response of  t he  i n d i v i d u a l  cores w i l l  depend on D. 

Obviously, 

As i n  t h e  previous example, the temperature feedbacks had l i t t l e  

in f luence  on the  system dynamics and neg lec t ing  them made only a very 

s l i g h t  change i n  the  system response. Again t h e  f i n a l  va lue  of t h e  system 

power response 

i n c r e a s i n g  f o r  

p o s i t i o n  s t a t e  

damping r a t i o ,  

w a s  a f f e c t e d  by v a r i a t i o n s  i n  the  power feedback c o e f f i c i e n t s ,  

decreasinR va lues  i n  kl o r  k3. Neglecting the  c o n t r o l  rod 

v a r i a b l e  feedback y i e l d s  a s t e p  response wi th  about a 0.3 

and again v a r i a t i o n s  i n  k5 f. 20% had l i t t l e  e f f e c t  on t h e  

power response.  It can be concluded the re fo re  t h a t  only the  feedback co- 

e f f i c i e n t s  kl, k and k have apprec iab le  e f f e c t s  on t he  system behavior.  3 5 

I n a c c e s s i b l e  S t a t e  Variables  

I n  t h e  examples presented ,  i t  w a s  assumed t h a t  a l l  s ta te  v a r i a b l e s  were 

a v a i l a b l e .  I f  delayed neutrons a re  included i n  t h e  system model, obviously 

i t  is  impossible t o  measure neutron precursor  concent ra t ion  f o r  c o n t r o l  pur- 

poses ,  and thus t h i s  s t a t e  v a r i a b l e  i s  not  a v a i l a b l e .  However, i t  can e a s i l y  

be  generated provided i t  can 5 e  detemdried from a mathematicai r e l a t i o n s h i p .  

To demonstrate,  consider  t h e  block d iag ram of a r e a c t o r  system with delayed 

neutrons and s ta te  v a r i a b l e  feedback, a s  shown i n  Fig.  3.8a. 

Obviously, the  state v a r i a b l e  x1 cannot be measured; however, i t  can 

be generated by moving t h e  l i n e  a t  x t o  x as shown i n  Fig.  3.8b. Fig. 3.8b 1 2 

reduces t o  the  form i n  Fig. 3 . 8 ~ .  

Clear ly ,  from the  d iscuss ion  above, s ta te  v a r i a b l e s  t h a t  are no t  ava i l -  

a b l e  can be  generated by p l ac ing  a frequency dependent element i n  the  feed- 

back path as demonstrated. I f ,  f o r  some reason, one of  t h e  s t a t e  v a r i a b l e s  

cannot be fed back o r  cannot be generated,  then only n-1 poles  of t h e  des i r ed  

closed-loop t r a n s f e r  func t ion  can be s p e c i f i e d ,  where n is  the  o rde r  of t h e  

system, the  o t h e r  po le  f a l l s  where i t  may. 
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Figure 3.8 Block Diagram of State  Variable Generation 
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Gain I n s e n s i t i v e  Systems 

, 

A system designed by t h e  method proposed i n  t h i s  s e c t i o n  is 

shown t o  possess  two i n t e r e s t i n g  c h a r a c t e r i s t i c s :  1) The closed loop 

t r a n s f e r  func t ion  is e s s e n t i a l l y  independent of a ga in  K loca ted  as 

shown i n  Figure 3-lb. This  is t h e  c h a r a c t e r i s t i c  t h a t  l eads  t o  t h e  

design of c e r t a i n  nonl inear  and time-varying systems i n  l a te r  chapters .  

2) The frequency domain c r i t e r i o n  f o r  an optimal con t ro l  s u b j e c t  t o  a 

quadra t i c  performance index of the  form of Equation 3-3 is  always satis- 

f i e d  f o r  some performance index, As mentioned previous ly ,  c o n t r o l  systems 

i n  genera l  do not  have t h i s  property.  

The second i t e m  is considered f i r s t .  A frequency domain crite- 

r i o n  f o r  an optimal c o n t r o l  subjec t  t o  a performance index of t h e  form 

ofEquation 3-3 has  been shown by Kalman (1964) t o  be ( f o r  a c o n t r o l l a b l e  

s y s  tem) 

ll+kT@(s)k12 - -  = 1+ITT$(s)"12 . (3-20) 

Here 9 ( s )  = [SI-&]-~ is t h e  reso lvent  mat r ix  of t h e  p l a n t  t o  be con- 

t r o l l e d  p l u s  any series compensation. 

P 
f o r  t h e  open loop t r a n s f e r  funct ion $s) = KG(s). 

Equations 3-1 and 3-2 are solved 

The r e s u l t  i s  

From Figure 3-lc 

Heq(s) = 

and Equation 3-21, 

P 

(3-21) 
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Equation 3-20 can now be w r i t t e n  i n  the  form 

(3-23) 

o r  

Thus f o r  a system t o  be optimal f o r  some q u a d r a t i c  performance index,  

i t  is  necessary  t h a t  i nequa l i ty  3-24 be s a t i s f i e d .  This is  r a r e l y  the  

case i n  a system designed i n  the c l a s s i c a l  manner, as can b e  seen from 

Figure 3-9, where curve a represents  a t y p i c a l  open loop func t ion ,  

KG(s)H ( 8 ) .  I n  o r d e r  t o  be an optimum system, t h e  p l o t  of KG(s)I! (s) 

must remain o u t s i d e  t h e  u n i t  c i r c l e  wi th  c e n t e r  a t  -1. Such a system is 

represented  by curve b. 

method of t h i s  s e c t i o n  always s a t i s f y  t h i s  condi t ion .  

eq eq 

It is  shown below t h a t  systems designed by the  

S ince  the  des ign  procedure of t h i s  s e c t i o n  is extended t o  t h e  

case  where the  ga in  K is nonl inear  and/or time-varying i n  Chapter 4 ,  i t  

is d e s i r a b l e  t h a t  K no t  appear i n  t h e  t r a n s f e r  func t ions  used to der ive  

the  express ion  f o r  H ( 8 ) .  In  o rde r  t o  accomplish t h i s ,  u' is  def ined 

as shown i n  Figure 3-lc (u' = Ku) and t h e  r e l a t i o n s h i p  b = Kb' is  used. 
eq 

Equation 3-21 is  rep laced  with 

and Equation 3-22 wi th  

_kT9 ( s  )h ' 
c @ ( s ) b '  

H e q ( s )  =I 

-., .. 

Equation 3-22' is now w r i t t e n  i n  the  form 

(3-21) 

(3-22') 
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t 

- P o l a r  P l o t  of ari 
Optimum System 

= G ( j w )  f o r  a S e r i e s  Compensated 
Unity Feedback System. 

Figure 3 - 9 .  Nyquist Diagram of GH (jo) f o r  a System t h a t  Would be 

Considered Satisfactory i n  Terms of Conventional Cri ter ia .  

eq 



5 3  

(3-25) 
detF (s) kTFa(s)bl - -  

cTFa(s)b' 
B (SI = 5 

cTFa(s)b' ..- - -  eq 

detF(s)  .. 
where Fa(s) is t h e  a d j o i n t  of t h e  r e so lven t  matrix F ( s ) .  The elements 

a o f  F (s) conta in  terms of order  (n-1) and lower i n  t h e  numerator and 

have no poles .  I f  a l l  t h e  k a r e  non-zero, i t  follows t h a t  t h e  numera- 

t o r  of H (9) w i l l  have (n-1) zeros  and, s i n c e  t h e  denominator of 

Equation 3-25 is t h e  numerator of G ( s ) ,  t h a t  t h e  po le s  of H (s) are 

equal  t o  zeros  of C(s) .  

and Equation 3-25 becomes 

.. 

i 

eq 

eq 
For Class 11 systems, X(s) = [sI-A]-l(b'+d's)u'(s) . . I  

5 -  

kTFa(s) - 5  (b'+d's) - -  
sTFa(s) (b'+d's) . . . .  He,(s> = (3-26)  

This is given h e r e  i n  o r d e r  t o  show t h a t  f o r  a system conf igu ra t ion  such 

as t h a t  of Figure 3-UJ,where b '  and d '  are r e l a t e d  by a cons t an t ,  t h e r e  

w i l l  be a c a n c e l l a t i o n  i n  Eq. 3-26 and H 

5 - 
( 5 )  w i l l  not  have a p o l e  

eq 
1 corresponding t o  t h e  ze ro  of G(s) a t  s = - - , 

The des i r ed  H (s) is chosen so t h h t  t h e  (n-l) zeros are eaua l  t o  

(n-1) of t h e  n po le s  of  G ( s ) .  From t h e  above d i scuss ion ,  i t  then follows 

1 1 

t h a t  

(3-27) 

except f o r  a system configurat ion such as t h a t  shown i n  Fiqure 3-YQ. I n  

t h i s  case, since H (s) does not  have a po le  correspondinR t o  t h e  zero 
eq 

1 of G ( s )  a t  s = - - 
' I '  1 

3 



54 

1. 
Figure 3-10. System i n  which b and d a r e  Related by a Constant,  T 
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(3-28) 

I n  the  above equat ions ,  -a is the pole  of G ( s )  f o r  which t h e r e  is no 

corresponding zero i n  H (81, - - is t h e  zero  of G ( s )  f o r  which t h e r e  

is no corresponding pole  i n  H (s), and K' and K'r are t h e  open loop 

ga ins  f o r  t h e  systems represented by Equations 3-27 and 3-28 r e spec t ive ly .  

eq T1 

eq 1 

From Equations 3-27 and 3-28, it fol lows immediately t h a t  t h e  

frequency c r i t e r i o n  f o r  opt imal  c o n t r o l  is always s a t i s f i e d ,  s i n c e  t h e  

p o l a r  p l o t  of KG(e)H 

t h e r e f o r e  remains ou t s ide  t h e  un i t  circle of Figure 3-9. 

( 8 )  never c rosses  i n t o  t h e  l e f t  h a l f  plane,  and 
=q 

From Figure  3-lc and Equation 3-27, 

(3-29) 

rJlsl = G(s), and D ( s )  has a zero  a t  s = -a. where 

sen ted  by Equation 3-28, t h i s  becomes 

For t h e  case  repre-  
D ( 8 )  

(3-30) Y KN(S) fib) = 
q s + a + K K ' r l s + K K ' ]  s+a 

I n  both  these  equat ions,  .it is seen t h a t  t h e  (s+a) f a c t o r  i n  D ( s )  is 

cancel led.  It fol lows t h a t  f o r  a l l  cases  (n'l) of t h e  c losed  loop poles  

are t h e  same as (n-1) of t h e  open loop poles .  

w i l l  have l i t t l e  e f f e c t  on t h e  na tu re  of t h e  response i f  K is made large 

enough, s i n c e  t h e  r e s idue  and time cons tan t  a s soc ia t ed  wi th  i t  become 

n e g l i g i b l e  as it  moves f a r  ou t  from t h e  o r i g i n .  

The nth c losed  loop po le  

I f  t h e  state v a r i a b l e s  are def ined in such a way t h a t  t h e  block 

diagram of Figure 3-11 r e s u l t s ,  t h e  expression f o r  H 

3-25 and 3-26 can be w r i t t e n  in t h e  same form as t h a t  r e s u l t i n g  from t h e  

(s) i n  Equations 
eq 
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Figure 3-11. System wi th  n F i r s t  Order Transfer Functions i n  Series i n  

the Forward Path.  
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block diagram formulation. Since b '  (and d '  i f  Equation 3-26 a p p l i e s )  

is  non-zero only i n  the  nth element, H (5) becomes 
eq 

(3-31) 

a where F 

t h a t  cT = I 1 

(s) is  t h e  nth column of Fa(s) .  With t h e  previous assumptions n 

0 - 0 1 and t h a t  kl = 1, Equation 3-31 reduces 

f u r t h e r  t o  

a (s)+k2fn2 a (s)+"'+k f a  (s) 
f n l  n nn 

Heq(s )  = fnl a (9) 

a 
fnl (9) 

a 
fnl (SI 

( 3- 32) 

a a where f ( 8 )  is t h e  ith element of F (s).  Since f o r  t h i s  conf igu ra t ion  
n i  n 

Equation 3-32 can b e  w r i t t e n  as 

This has  the  same form as t h e  expression f o r  H ( s )  obtained from t h e  

block diagram formulat ion by Schultz (1966). Thus t h e  block diaRram 

eq 



formulat ion is  seen  t o  represent  a s p e c i a l  case of t h e  more general  

mzt r ix  formd.ation. 

Some r e s t r i c t i o n s  on the H ( 8 )  t h a t  can be  r e a l i z e d  by feeding 
eq 

back a l l  t h e  state v a r i a b l e s  a re  obvious. For example, i n  Figure 3-11, 

t h e  zeros  of H 

G (s) s ince ,  as seen  from Equation 3-33, t h i s  would r e q u i r e  t h a t  kn = =. 

Also, s i n c e  t h e  output  is fed back d i r e c t l y  t o  t h e  input ,  i t  follows 

t h a t  H 

a zero  roo t .  I n  a system wi th  one i n t e g r a t i o n ,  t h e  zeros  of H ( 8 )  are 

forced  t o  equal  t h e  non-zero poles  of G(s). 

i n t e g r a t i o n s ,  H (s) cannot have (n-1) zeros  equal  t o  (n-1) poles  of G ( s ) .  

( 8 )  cannot b e  made equa l  t o  t h e  poles  of Gn - l ( s ) -m** 
eq 

1 

(s) must always have a constant  term and t h e r e f o r e  cannot have 
eq 

eq 
I n  a sys t emwf th  two o r  more 

eq 

On t h e  b a s i s  of t h e  above d iscuss ion ,  t h e  fol lowing procedure is 

proposed f o r  t h e  design of gain i n s e n s i t i v e  systems: 

1. 

2. 

3. 

4. 

Describe t h e  system i n  terms of meaningful, phys ica l  s ta te  

v a r i a b l e s  and assume t h a t  t hese  are a l l  a v a i l a b l e  and are 

fed  back through constant  ga in  elements. 

Choose t h e  des i red  closed loop response $s). 

Use a combination of series compensation and feedback t o  

in su re  t h a t  a l l  bu t  one of t h e  open loop poles  correspond 

t o  the  des i red  closed loop poles .  Normally, a pole  a t  t h e  

o r i g i n  is l e f t  undisturbed so as not  t o  change t h e  type of 

t h e  system. 

Use state v a r i a b l e  feedback t o  fo rce  t h e  zeros of H 

t o  correspond t o  the a l t e r e d  open loop po le s ,  which are 

t h e  des i r ed  closed loop poles .  

ki can be  found by c a l c u l a t i n g  H 

Y 

( 8 )  
eq 

The requi red  va lues  of t h e  

( 8 )  i n  terms of t h e  ki 
eq 
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by any of t h e  above methods and equa t ing  t h i s  t o  t h e  

des i r ed  H ( 8 ) .  
eq 

5. I f  a l l  s t a t e  va r i ab le s  are not  a v a i l a b l e ,  use t h e  calcu- 

l a t e d  va lues  of k t o  determine s u i t a b l e  minor loop com- 

pensa t ion .  

.. 

The fol lowing example i l l u s t r a t e s  t h e  des ign  procedure. 

Example 3-5: The system of Example 3-1 i s  used. It is assumed t h a t  t h e  

d e s i r e d  l o c a t i o n s  of two of t h e  closed-loop po le s  are a t  s - -2 f j 2 .  

The o t h e r  closed-loop pole  is not s p e c i f i e d ,  b u t  as shown above, moves 

along the  nega t ive- rea l  axis as R is var ied .  In Example 3-1, t h e  numera- 

t o r  of G ( s )  w a s  found t o  b e  10. The denominator is 
r 1 

O s+4 I 
+ This  g ives  

10K 
s (sfl) (s+4) e 

G(a) = 

Some conf igu ra t ion  f o r  G(e)  m u s t  be  assumed be fo re  proceeding t o  s t e p  3 

of the  design procedure. 

t o  f eed  back x 

a t  t h e  l o c a t i o n  of t h e  d e s i r e d  c losed  loop po le s  of s = -2 2 j 2 .  

This  is shown i n  F igure  3-12a. It is necessary 

and x 2 3 as shown i n  Figure  3-12bto have open loop poles  

This 

r e q u i r e s  t h a t  

-2  

s+4+Klk 
s 2 +48+8 = d e t  ri: 1 

= s 2 +(5+Klk2')s+4+Klk2'+2K1. 



60 

r 
5 

s + 4  

U 
, -  K 
7 

J 

1 Y = 
, x2 - x3 - 2 

s + l  S 

A 

Figure 3-12a. The P lan t  to  be Control led i n  Example 3-5 .  

4 

1 y = x  2 1  - 
S 

5 x3 2 x1 Y = 

s + 4  s + 1  S K1 K U 

* - J 

I A 

Figure 3-12b. Feedback Configurat ion Used t o  Force the  Open Loop Poles  

t o  be a t  the  Location of t he  Desired Closed Loop Poles .  

/ I - 
X - - 5 ~ 2 5 

2 s + 4  s + l  

Figure  3-12c. Method of Con t ro l l i ng  the  P lan t  of Example 3-5. 

k 
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Equating coe f f i c i ent s  and solving the result ing equations gives 

5 K1 = 2 

2 
k 2 1  = - 5 ’  

Proceeding t o  step 4 of the design procedure, the f i n a l  feedback con- 

f iguration required by S t e p  4 of the design procedure i s  shown i n  

Figure 3-12c. 

S+l -2 

- 5 s+3 i o  I 2 - 

( 3 - 3 4 )  

Substituting into  Equation 3-25 gives  

Heq(s) = 2 kg [s(s+l)+ - 

Equating t h i s  t o  the des ired value of H (s),  
eq 

kg 2 H (9) = 7 [ s  +4s+8], =I I 

gives 

- 4 .  - 2k2 

kg 

Solving t h i s  set of equations y i e l d s  

1 
k3 “z 
k2 = - .  1 

2 
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Appl ica t ions  of Gain I n s e n s i t i v e  Design t o  Reactor Cont ro l  

I n  t h i s  s e c t i o n ,  t he  ga in  i n s e n s i t i v e  design procedure ou t l ined  i n  

the previous s e c t i o n  is app l i ed  t o  t h e  c o n t r o l  of t h e  nuc lea r  r e a c t o r  
I .-_- - 

e-- 
, model wi th  r e a c t i v i t y  feedback due t o  temperature ,  shown i n  Fig. 3.13 where 

p =  
i 

p f  = 

n =  

n =  
0 

x =  
A =  

5"  
a -  

intlut  r e a c t i v i t y  

feedback r e a c t i v i t y  

r e a c t o r  power 

s teady  s t a t e  power l e v e l  

weighted neutron p recu r so r  decay cons t an t  

neutron generat ion t i m e  

cons t an t  r e l a t i n g  power t o  r e a c t i v i t y  feedback 

h e a t  removal c o e f f i c i e n t  
n 

0 Observing Fig. 3.13 i t  is noted t h a t  t h e  gain term, h, i s  a func t ion  of 

t h e  s t eady  state power l e v e l  and the re fo re  w i l l  vary as the  power level 

changes. This v a r i a t i o n  w i l l  change the  po le  l o c a t i o n s  of t he  c losed  loop 

t r a n s f e r  func t ion ,  no and thus t h e  system dvnamics. The design crite- 
Pi(S) 

* r i o n  is to  determine a s ta te  v a r i a b l e  feedback-cont ro l  such t h a t  t h e  system 

dynamics is independent of power l eve l .  For purpose of i l l u s t r a t i o n  t h e  

fol lowing va lues  are assumed f o r  the  s y s t e m  parameters 

B 
A X = 0.1 - = 6 . 4  a = 2 KT = 5 x 

It is  f u r t h e r  assumed t h a t  t h e  c o n t r o l l e r  dynamics can be  neglec ted  i n  

comparison t o  the  t i m e  cons t an t s  of t h e  r e a c t o r .  The assumption of a 

p e r f e c t  c o n t r o l l e r  wi th  a t r a n s f e r  func t ion  equal  t o  1 is reasonable  i n  

space reactor systems the c o n t r o l l s r o  have a verp fao t  t i m e  resp-. 
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4 

, 

I s + a  I 

Figure 3.13 Point Reactor with Reactivity Feedback 
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Applying s ta te  v a r i a b l e  

t o  t h e  r e a c t o r  model i n  Fig. 

Fig.  3.14a, which reduces t o  

feedback c o n t r o l ,  under t h e  assumptions above, 

3.13 gives a system of t h e  form shown i n  

t h e  sys t em i n  Fig. 3.14b, where 

5x10-’ 
+ kl + s+2 (3-35) 

-9 If kl and k2 are l a r g e  compared t o  10 

neglec ted  and Eq. (3-35) reduces t o  

then the  term involv ing  lo-’ can be 

(kl+k2) s+O . lkl  

Heq(s) = s H . 1  

L e t t i n g  kl = 1 and assuming t h e  des i red  H ( 5 )  i s  
eq 

(kl+k2) (s+6.4) 
Heq(s) = sw.1 

(3-36) 

(3-37) 

then comparing Eqs. (3-36) and (3-37) gives 

k 2 m - -  63 
64 

Clea r ly  wi th  these  va lues  f o r  k 

terms invo lv ing  10 is v a l i d .  The system i n  Fig. 3.14a now becomes of t h e  

form shown i n  Fig. 3.15. 

and k2,  t he  assumption of neg lec t ing  t h e  1 
-9 

The t r a n s f e r  func t ion  of the  system i n  Fig. 3.15, has  po le s  a t  
R ( s )  n 

64 A 
0 s = -6.4 and s - - - and a zero a t  s ~-0.1. For va lues  of - greater 

n 
has  very l i t t l e  e f f e c t  on system dynamics. For than 10 , t h e  po le  a t  - - 

64 A 

a neutron genera t ion  t i m e  of A =  

A 
0 4 

sec t h e  corresponding power level 

is 10 w a t t s .  Therefore ,  f o r  power r e a c t o r s ,  t h e  system dynamics i s  
n 

v i r t u a l l y  independent of t h e  gain and thus t h e  r e a c t o r  power l e v e l .  

Since i t  is  impossible  t o  measure t h e  state v a r i a b l e  x2, t h e  c o n t r o l  is 

r e a l i z e d  by feeding  back t h e  r eac to r  ou tput  through a lead  l a g  network 

0 

- -._ . 

v -- ~ - -  _ _  -- c _  
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5~  IO-^ 
s+ 2 
5~  IO-^ 
s+ 2 

s+ 0.1 XI ‘ n o  
A s(s+ 6.4) 

(b 1 

Figure 3.14 Point Reactor with State  Variable Feedback 
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r - n0 ‘/64 6 4 ( s + O . l )  
s+6.4 A S 

Figure 3.15 Equivalent Block Diagram for System i n  Figure 3 .14  
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given by E q .  (3-37) .  The resultant design is  shown i n  Fig.  3 .16 .  Un- 

fortunately,  the design of Fig.  3.16 may not be  the transfer function 

desired,  even though i t  i s  independent of the  reactor power l e v e l .  



6 8  

r +  fJ (s + 0.1) 

s( s + 6.4) 
A 

Y 

t- 0.016(s t 6.4) 
s+ 0.18 

Figure 3.16 Final Reactor Control System Design 
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This is  the  d e s i r e d  r e s u l t  and, w i t h  t h e  assumption t h a t  a l l  t he  s t a t e  

v a r i a b l e s  are a v a i l a b l e  t o  be fed back, completes t h e  design procedure. 

The closed loop t r a n s f e r  funct ion is  

Y 2 5K 
$S) = 2 25 (s + 4 ~ + 8 ) ( s +  - 2 Kk3) 

This has  two po le s  a t  t h e  l o c a t i o n  of t h e  modified open loop po le s  and 

a t h i r d  po le  a t  s = - 2L\k3. 25 Thus i f  K is  l a r g e ,  t h e  t h i r d  p o l e  w i l l  

have l i t t l e  e f f e c t  on t h e  system response,  because of t h e  f a s t  t i m e  con- 

s t a n t  and small r e s idue  a s soc ia t ed  w i t h  it. The response is  thus p r i -  

mari ly  dependent on t h e  p a i r  of complex po le s  and independent of K. 

Procedure When A l l  S t a t e  Variables Cannot B e  Fed Back 
I 

\ This t o p i c  was discussed In jkmnples 3.4 and 3.5 and is 

f u r t h e r  emphasized In t h i s  s e c t i o n  by working an example. 

3-1, i t  i s  assumed t h a t  x2 cannot be f e d  back. 

determlned as before  and x 

I n  example 
L .  

The c o e f f i c i e n t s  are 

i s  f e d  back through a feedback func t ion  k3 3 
Y2(s) x- (9) Xi (SI 

x3(s) u(s) 
'' can be  found by notinR t h a t  - can + k  - This r a t i o  of 

2 X2(S)' 

b e  found i n  the manner discussed p rev ious ly  by l e t t i n g  p = x i n  Equation 

3-2. This simply means t h a t  ci i s  t h e  only non-zero element i n  c .  Per- 

forming t h i s  ope ra t ion  i n  t h e  problem under cons ide ra t ion  gives  - = 

i 

x2 (SI 
x 3 ( s )  

k3(~+1)+2k2 . This 2 - 
s+l Therefore,  i s  f ed  back through k3 + k2 (s+l) - s+l x3 

feedback func t ion  can be  r e a l i z e d  wi th  a pass ive  network. It i s  nex t  

assumed t h a t  only t h e  output  can be f e d  back i n  Example 3-1. Again, t h e  

feedback c o e f f i c i e n t s  are  determined as be fo re ,  and x4 is  de f ined  as shown 

i n  Figure 3-7a and fed back through H1(s), where 
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Y = 

Figure 3-7a. 

be Fed Back. 

Feedback Configuration When Only the Output Variable Can 

Figure 3-7b. An Equivalent System Using Series Compensation. 
K 
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H1(s) = k2 

From t h e  v a l u e s  of 

H1(s) = k2 

the  example, t h i s  is  found t o  be  

10 5 10k2+5k3(s+1) 

(s+l)(s+4) + k3 9+4 = (s+l)(s+4) 

This feedback funct ion can a l s o  be r e a l i z e d  with a passive network. I n  

f a c t ,  i t  can be  combined with K t o  o b t a i n  a series compensation network 

as shown i n  Figure 3-7b. This configurat ion i s  similar t o  t h a t  obtained 

by t h e  Guillemin method, 

On t h e  b a s i s  o f  t h e  above d i scuss ion ,  t h e  Procedure t o  be followed 

when one o r  more s ta te  v a r i a b l e s  cannot be  fed back i s  t o  c a l c u l a t e  t h e  

feedback c o e f f i c i e n t s  as though a l l  s ta te  v a r i a b l e s  could be f ed  back and 

t o  use t h e  r e s u l t s  i n  determining p h y s i c a l l y  r e a l i z a b l e  feedback funct ions.  

This is n o t  t h e  same as feeding back a l l  t he  s t a t e  v a r i a b l e s  f o r  two rea- 

sons: l) It assumes t h a t  t he  t r a n s f e r  funct ion between t h e  two states 

is known e x a c t l y  and can be  reproduced exac t ly .  This  i s  never t r u e .  

Changes i n  the  system parameters would a f f e c t  t h e  two feedback confie;ura- 

t i o n s  d i f f e r e n t l y .  

2) 

Summary 

A method f o r  designing l i n e a r  systems f o r  a d e s i r e d  closed loop 

response by feeding back a l l  the s ta te  v a r i a b l e s  has  been developed from 

t h e  matrix r e p r e s e n t a t i o n  of such systems. The procedure is s t r a i g h t -  

forward and r e q u i r e s  only elementary ma t r ix  ope ra t ions  and t h e  s o l u t i o n  

of n l i n e a r  a l g e b r a i c  equations.  It p a r a l l e l s  t h e  procedure of  Schul tz  

(1966) which i s  based on t h e  block diagram system rep resen ta t ion .  It i s  
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used t o  develop a procedure f o r  designing gain i n s e n s i t i v e  svstems which 

l e a d s  t o  t h e  design method €or c e r t a i n  nonl inear  and/or time-varying 

systems developed i n  t h e  following chapter .  

Although the  des ign  procedure is  r e f e r r e d  t o  as the  SVF method, 

i t  inco rpora t e s  t he  c l a s s i c a l  techniaue of series compensation wi th  t h a t  

of feeding back a l l  t he  state va r i ab le s .  The use of s e r i e s  compensation 

makes i t  p o s s i b l e  t o  add poles  and zeros, thereby i n c r e a s i n g  the  o rde r  

of t he  system and inc reas ing  the f l e x i b i l i t y  of t h e  design method. It 

does n o t  make use of t he  information provided by the  state v a r i a b l e s .  

The use of s t a t e  v a r i a b l e  feedback does make use of t he  information pro- 

vided by a l l  t h e  state va r i ab le s ,  and t h i s  in format ion  is f ed  back through 

cons tan t  ga in  elements as suggested by t h e  resu l t s  of modem c o n t r o l  theory.  

An i n t e r e s t i n g  c h a r a c t e r i s t i c  of t he  gain i n s e n s i t i v e  systems desinned by 

t h e  method proposed he re  is t ha t  they always s a t i s f y  the  Kalman frequency 

condi t ion  f o r  op t ima l i ty .  H o s t  systems designed by c l a s s i c a l  techniques 

do not  s a t i s f y  t h i s  c r i t e r i o n .  



CHAPTER I V  

DESIGN OF NONLINEAR AND/OR TIME-VARYING CONTROL 

SYSTEMS V I A  STATE VARIABLE FEEDBACK 

In t roduc t ion  

I n  t h i s  chapter ,  a proposed method of s y n t h e s i s  f o r  s ing le- input ,  

s ingle-output  systems containing a s i n g l e  nonl inear  and/or time-varying 

ga in  which s a t i s f i e s  condi t ions  2-4 ( o r  2-5) and 2-6 i s  developed. This 

is accomplished by compensating the  cons tan t  l i n e a r  po r t ion  of t h e  system 

i n  such a way t h a t  t h e  Popov s t a b i l i t y  c r i t e r i o n  discussed i n  Chapter 2 

is s a t i s f i e d .  The design procedure i s  a l o g i c a l  ex tens ion  of t he  state 

v a r i a b l e  feedback design of  l i n e a r  ga in  i n s e n s i t i v e  systems as developed 

i n  Chapter 3. 

an i n f i n i t e  s t a b i l i t y  s e c t o r  and t o  have a bounded output  f o r  bounded 

Systems designed by t h e  proposed method are shown t o  have 

inputs .  

The degree of success  w i t h  which t h e  method can be used i s  dependent 

upon t h e  form of t h e  p a r t i c u l a r  system. 

c h a r a c t e r i s t i c  of a n a l y s i s  and design procedures f o r  nonl inear  systems. 

I n  i t s  b a s i c  form, t h e  method is l imi t ed  t o  systems wi th  one nonl inear  and/ 

o r  time-varying ga in  loca ted  as shown i n  Figure 4-1. 

systems having no more than one i n t e g r a t i o n  noted i n  t h e  d i scuss ion  of 

l inear  ga in  i n s e n s i t i v e  systems a p p l i e s  here  a l so .  It is shown i n  the  

next  chapter  t h a t  t h e  method i s  no t  app l i cab le  t o  p a r t i c u l a r  cases  o t h e r  

than t h e  s imples t  p a r t i c u l a r  case due t o  s t r u c t u r a l  s t a b i l i t y  problems. 

This l a c k  of g e n e r a l i t y  is 

The l i m i t a t i o n  t o  

73 
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Thus the  method i n  i t s  bas i c  fonn i s  app l i cab le  only f o r  t he  p r i n c i p a l  

case and the  s imples t  p a r t i c u l a r  case .  Modif ica t ions  i n  the  design 

procedure which remove some of these r e s t r i c t i o n s  i n  c e r t a i n  cases  a r e  

considered i n  Chapter 5. 

The proposed method is app l i cab le ,  i n  a p r a c t i c a l  sense,  t o  

systems of any order .  The determinat ion of t he  feedback c o e f f i c i e n t s  

r e q u i r e s  the s o l u t i o n  of (n-1) l i n e a r  a l g e b r a i c  equat ions ,  where n i s  

the  o rde r  of t h e  l i n e a r  system G ( s )  . 
formula t ions  of the  procedure a re  d iscussed .  

Both the  matrix and block diagram 

The organiza t ion  of t h e  remainder of t h i s  chap te r  i s  as fol lows:  

1) For systems con ta in ing  nonl inear  ga ins ,  t he  bas i c  design procedure 

i s  developed, and t he  abso lu te  s t a b i l i t y  p r o p e r t i e s  and the  c losed  loop 

response of the r e s u l t i n g  system a r e  d iscussed .  2) These same t h r e e  

t o p i c s  are d iscussed  w i t h  respec t  t o  t ime-varying ( o r  nonl inear  and t i m e -  

varying)  systems. 3) The s i g n i f i c a n t  f e a t u r e s  of systems designed by 

t h e  proposed method a r e  summarized. 

The SVF Method f o r  Nonlinear Systems 

Figure 4-1 i l l u s t r a t e s  t he  b a s i c  feedback conf igu ra t ion  of t h e  

compensated system. 

series w i t h  a s t a b l e  l i n e a r  system, G ( s ) .  

i n  t h e  p l a n t  t o  be c o n t r o l l e d  as  an undes i rab le  c h a r a c t e r i s t i c ,  o r  i t  

may be i n t e n t i o n a l l y  introduced i n  o rde r  t o  achieve a des i r ed  r e s u l t .  

For example, a s a t u r a t i o n  element might be used t o  prevent  signals i n  

some p a r t  of the  system from becoming excess ive .  

The system c o n s i s t s  of a s i n g l e  nonl inear  ga in ,  N,in 

The nonl inear  gain may appear 

The system equat ions  

a r e  given i n  Chapter 2 and a r e  repea ted  here .  
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Figure  4-1. 

a Single  Nonlinear and/or Time-Varying Gain. 

Basic Configuration f o r  Con t ro l l i ng  a Plant  Containing 



u = f ( a )  
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( 4 - 1 )  

( 4 - 2 )  

( 4 - 3 )  

( 4 - 4 )  

A s  i n  t h e  case of t h e  l i n e a r  systems of Chapter 3 ,  s ince  the state 

v a r i a b l e s  are r equ i r ed  t o  correspond t o  physical  v a r i a b l e s ,  Equation 4-1 

might have the form 

2 .. = Ax+bu+dG. ( 4 - 5 )  -.. - - 
The matr ix  formulation of t he  b a s i c  design procedure i s  e x a c t l y  

the same a s  t h a t  developed f o r  l i n e a r  gain i n s e n s i t i v e  systems i n  the 

previous chap te r  and i s  the re fo re  n o t  repeated here .  It i s  noted t h a t  the 

ga in  K appears nowhere i n  t h e  t r a n s f e r  func t ions  used i n  the c a l c u l a t i o n  

of t h e  ki f o r  gain i n s e n s i t i v e  systems and t h e r e f o r e  does not  a f f e c t  

H e q ( s ) .  Thus t h e  f a c t  t h a t  K i s  now assumed t o  be nonl inear  has no e f f e c t  

on t h e  procedure f o r  f ind ing  II (s) . The only equat ions i n  the  d i scuss ion  

of Chapter 3 which cannot be appl ied i n  the  nonl inear  case are those f o r  

eq 

t h e  c losed  loop t r a n s f e r  funct ion.  The r e fe rence  t o  c losed loop poles  i n  

t h e  procedure i s  j u s t i f i e d  f o r  the nonl inear  case  i n  t h e  s e c t i o n  on c losed  

loop response.  

The block diagram formulation of t h e  design procedure r e q u i r e s  

t h a t  t h e  block diagram be manipulated i n t o  the  series form shown i n  

Figure 4-2a, where t h e  G ( s )  are  f i r s t  o rde r  t r a n s f e r  func t ions .  The 

feedback conf igu ra t ion  i s  shown i n  Figure 4-2b, and H (s) can e a s i l y  be eq 

determined by comparing t h i s  with the equ iva len t  system of Figure 4-2c. 

The r e s u l t  i s  

i 
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Figure  4-2a. Block Diagram i n  t h e  Form of a S e r i e s  of F i r s t  Order 

Transfer  Funct ions.  

Figure 4-2b. Method of Contro l l ing  the  System of Figure 4-2a. 

Figure 4-2c. An Equivalent  System f o r  F igure  4 - 2 b .  



Heq(s) = l+k 

which is the same as Equation 3-33 developed from 
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-1 

( 4 - 6 )  
9 

the matrix 

representation for this particular configuration. 

Absolute Stability of the Resulting System 

The two possible open loop transfer functions for a system 

designed by the proposed method are given in Equations 3-27 and 3-28 

and are repeated here: 

(3-27) 

(3-2 8) 

The modified plot used in the interpretation of the Popov criterion 

never crosses into the left half plane for either of these functions. 

Therefore, the Popov line can be drawn through the origin, indicating 

that the sector i n  xhich the  system is absolutely stable for the type 

nonlinearity being considered includes the entire first and third 

quadrants. 

Closed Loop Response of the Resulting System 

A mathematically equivalent system is derived for studying 

input-output relations of the closed loop system. The linear system 

G ( s )  is rearranged as shown in Figure 4-3a, where G (s)  is the first a 

orde r t Tans f e r 

order transfer 

function of Equation 3-27 or 3-28, G ' ( s )  is an (n-1)st 

function given by 

P Go 
K1'Ga(s)  ' (4-7) 



79 

N , f (a)  G,(s)  G ' ( s ) ,  Y = 

Figure 4-3a. 

with the Linear Part Rearranged, 

The Equivalent System of Figure 4-1 Showing H (s)  and 
eq 

Figure 4-3b. The Equivalent System of Figures 4-3a and 4-1 for 

Determining Input-Output Relations. 
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n- 1 and K" is th2  c o e f f i c i e n t  of s i n  H (5). Figure  4-3a is  next  

represented  by t h e  equ iva len t  s y s t e m  of  Figure 4-3b, which is used i n  

t h e  a n a l y s i s  t h a t  fol lows.  The followinR observa t ions  are made con- 

ce rn ing  the  equ iva len t  system: 

eq 

1. 

2. 

3 .  

4.  

The state v a r i a b l e s  x$,---, x: are d i f f e r e n t  from 

those of F igure  4-1. Only (J, f ( u ) ,  and t h e  inpu t  and 

output  v a r i a b l e s  a r e  the same. 

Changes i n  system parameters w i l l  a f f e c t  t he  systems 

of F igures  4-1 and 4-3 d i f f e r e n t l y .  

The equ iva len t  system c o n s i s t s  of a f i r s t  o rder  nonl inear  

system w i t h  u n i t y  feedback i n  s e r i e s  w i th  an ( n - 1 ) s t  o rder  

s t a b l e  l i n e a r  system. Therefore ,  i f  i t  can be shown 

t h a t  the output  of the  nonl inear  po r t ion  is  bounded f o r  

a bounded inpu t ,  i t  fo l lows  t h a t  t he  output ,  xl, of t h e  

a c t u a l  system represented by Figure 4-1 i s  a l s o  bounded. 

The equ iva len t  system i n d i c a t e s  t h a t  t h e  (n-1) po les  of 

G'(s) are a l s o  poles  of the c losed  loop system. 

The Second Method of Liapunov i s  used t o  show t h a t  t h e  output  

i s  bounded f o r  a bounded inpu t .  

has  t h e  form of Equation 3-28. 

po r t ion  of t he  equiva len t  system a r e  then 

For g e n e r a l i t y ,  it i s  assumed t h a t  G,(s) 

The system equat ions  f o r  t he  nonl inear  

5' n = -ax'+K'f(a)+K'.r,k(u> n 

u = r - X I  . 
n 



A Liapunov function of the form 

2 v = x' 
n 

is chosen. It follows that 

ir - 2x; [ - a A + K '  f (a)+K'~~*(u) 1. 
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(4-10) 

(4-11) 

From Equation 4-9 and the nature of the nonlinearity as given by 

conditions 2-4 through 2-6, it follows that 

when r is bounded if the magnitude of 4 becomes large enough. 
also true for the cases where G , ( s )  has no zero (T 

G , ( s )  has an integration (a = 0), or both. 

linear portion of the equivalent system is bounded for all cases when the 

input is bounded. 

equivalent system is a stable linear system, it follows that the output 

of the closed loop system of Figure 4-1 is bounded for bounded inputs. 

Moreover, since the output of the nonlinearity is the same in the 

equivalent system of Figure 4-3b and in the actual system of Figure 4-1, 

all t he  physical state variables are bounded, or the aysten: is Lzgrange 

stable. 

will always become negative 

This is 

= 0) and where 

Thus the output of the non- 

Since the system from x: to the output y of the 

Under certain quite restrictive conditions, an analytical 

s,)lution for the output of the nonlinear portion of the equivalent system 

can be obtained. A sufficient condition for obtaining such a solution is 

that the variables in Equation 4-8 can be separated and the resulting 

integration carried out. This can be accomplished in the simplest 

particular case (a = 0) withT1 = 0 if the input is a step function and 

f(u) is such that 

the step input. The following example illustrates the procedure. 

dx can be integrated, where M is the magnitude of f (M-IC) 
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3 Example 4-1: It is assumed that r = Mu(t), f(a) = o  , a = 0, and = 0. 

Then Equation 4-8 may be written in the form 

1 
1 

- 

t 
f 

' I  - 
2 .  

(4-12) 

Carrying out this integration gives 

= t. 1 - 1 
~(M-x')~ 2(M-x;(0) 2 

n 
Rearranging and solving for < gives the result 

i- - 1  

(4-13) 

As t becomes large, x: 

this particular input. 

* M, the equilibrium state of the system for 

The conditions necessary for obtaining an analytical solution 

for x' are so restrictive that some other means of determining this output 

of the nonlinear part  of the equivalent system is desirable. Since the 

nonlinear part is a first order system, it is always possible to find 

n 

the output by use of the basic graphical procedure known as the isocline 

method when the input and the nature of the nonlinearity are known. This 

is illustrated by the following example. 

1 Example 4-2: 

type gain described by Figure 4-4a. 

It is assumed that Ga(s) = -and that f(a) is a saturation 
S 

The nonlinear portion of the 

equivalent system is shown in Figure 4-4b. 

needed since this example is concerned only with determining the response 

This is all the information 
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Figure 4-4a. Nonlinear Gain Characteristic for Example 4-2. 

-I 
I I 

Figure 4-4b. Nonlinear Portion of the Equivalent System for Example 

4-2. 
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of t h e  nonl inear  p o r t i o n  of t he  equiva len t  system. The i s o c l i n e  method 

i s  used t o  determine t h i s  response f o r  a s i n u s o i d a l  i n p u t ,  r = n s i n  t. 

From Figure 4-4b, 

(I = TI s i n  t-x' (4-14a) n' 

ic' = f ( a )  . (4-14b) n 

From t h e s e  r e l a t i o n s h i p s  and the  nonl inear  c h a r a c t e r i s t i c s  shown i n  

Figure 4-4a, t he  fol lowing va lues  of 5' a r e  determined: n 

1. When x; > 1 + n s i n  t ,  ic; = -1. 

2. \ h e n  x; < -1 + TI s i n  t ,  k' = 1. 
n 

3. When x; = h + 71 s i n  t f o r  -1 < h 1, 5; = -h. - -  

These va lues  of 5' are used t o  determine x' g raph ica l ly  a s  shown i n  n n 

Figure 4-5. 

equ iva len t  system, and the  output can now be found by l i n e a r  methods. 

This response i s  the  inpu t  t o  the  l i n e a r  po r t ion  of t he  

The a b i l i t y  t o  show t h a t  t h e  closed loop system has a bounded 

output  f o r  bounded inpu t s  and t o  determine t h e  output  f o r  a s p e c i f i c  

i npu t  i s  a s i g n i f i c a n t  advantage, as t h i s  is no t  gene ra l ly  Dossibie  wi th  

non l inea r  systems. The next  example , - i l l u s t r a t e s  t he  a p p l i c a t i o n  of t h e  

b a s i c  design procedure and the  c a l c u l a t i o n  o f  t h e  c losed  loop response 

of t he  r e s u l t i n g  system. 

Example 4-3: 

i n  Figure 4-6a. This  system might r ep resen t ,  f o r  example, a DC motor 

dr iven  by an ampl i f i e r  which s a t u r a t e s  for large inpu t s .  I n  t h i s  case  

x r e p r e s e n t s  p o s i t i o n ,  x2 ve loc i ty ,  and x t he  f i e l d  cu r ren t .  The 

s a t u r a t i o n  l e v e l  might be inherent  i n  t h e  a m p l i f i e r  o r  i t  might be b u i l t  

The block diagram of the  system t o  be c o n t r o l l e d  is  shown 

1 3 
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~ 

5 1 x2 L - x3 - 
. N  s + 5  s + l  ' s 

u= f(0) U 

r - - 

4 

Y = 

i 

Figure  4-6a. System t o  be Control led i n  Example 4-3. 

I I - 
J 

5 - - ,  
K1 s + 5  N U 

_1 

Figure  4-6b. Compensation of the System t o  Force t h e  Open Loop Poles  t o  

be Equal t o  the  Desired Closed Loop P o l e s ,  

I U 

Figure  4-6c. Method of Con t ro l l i ng  the Plan t  of Example 4-3. 

Figure  4-6d. Equivalent  System f o r  F igure  4-5c. 
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i n t o  the  a m p l i f i e r  t o  prevent  the v e l o c i t y  from exceeding some maximum 

va lue .  

i n  a s a t e l l i t e  t r a c k i n g  system. 

system can be very l a r g e  dur ing  the process  of l o c a t i n g  the t a r g e t ,  t hus  

d r i v i n g  the  a m p l i f i e r  wel l  i n t o  the s a t u r a t i o n  region.  Once the  t a r g e t  

i s  loca ted  and being t racked ,  la1 i s  assumed t o  be s m a l l  enough t h a t  t he  

An a p p l i c a t i o n  f o r  such a system might be t o  p o s i t i o n  an antenna 

The a c t i v a t i n g  s i g n a l , a ,  i n  such a 

system ope ra t e s  i n  the  l i n e a r  region. 

f o r  any a c t i v a t i n g  s i g n a l  and should respond quickly f o r  small a c t i v a t i n g  

Thus t h e  system must be s t a b l e  

s i g n a l s .  

t h e  ga in  of t he  a m p l i f i e r  i s  high i n  t h e  l i n e a r  region and that  the 

I n  order  t o  achieve the d e s i r e d  response,  i t  i s  assumed t h a t  

c losed  loop system has poles a t  s = - 2 - + j 3 .  The f i r s t  s t e p  i n  the 

des ign  procedure i s  t o  compensate the  system as shown i n  F igure  4-6b 

so t h a t  the  open loop poles  a r e  a t  t he  des i r ed  l o c a t i o n  of t he  c losed  

loop poles .  

-7 and K1 = 2 r e s u l t  i n  t he  open loop poles  having the  desired l o c a t i o n s .  

The s t a t e  v a r i a b l e s  a r e  then f e d  back a s  i nd ica t ed  i n  F igure  4-6c. 

By t h e  method of Chapter 3 ,  i t  i s  determined t h a t  k i  = 
1 

I n  

the  equ iva len t  system nf Figure 4-6d, 

2 k2 1 

k3 k3 
Heq(s) = k3S(S+1) + k 2 ~  + 1 = k3 [ s + ( l+- )s  + --I. (4-15) 

I n  o rde r  t o  r e a l i z e  t h e  des i red  c losed  loop-poles ,  t he  requi red  Heq(s) 

must have zeros  a t  s = -2 - + j 3 .  This  gives  . 
2 H (s) = k3 [s + 4s  + 13 eq 

Equating the  c o e f f i c i e n t s  of Equations 4-15 and 4-16 g ives  

k2 

kg 
1 + - = 4  

(4-16) 



Thus the  requi red  feedback c o e f f i c i e n t s  a r e  

1 
k g  =,E 
k2 a - 0  3 

13 
It has-already been shown t h a t  t h e  system when designed i n  the  

above manner w i l l  be a b s o l u t e l y  s t a b l e  r ega rd le s s  of the  gain i n  the  

l i n e a r  region of ope ra t ion .  I n  add i t ion ,  the  l o c a t i o n  of t he  two 

complex po le s  is  independent of the gain.  Therefore ,  the  ga in  can be 

made as h igh  as des i r ed  i n  the  l i n e a r  region,  and t h e  r e s u l t i n g  system 

h a s  the  d e s i r a b l e  c h a r a c t e r i s t i c s  of s t a b i l i t y  f o r  any e r r o r  s i g n a l  and 

the des i r ed  response i n  the  l i n e a r  reg ion  of ope ra t ion ,  

While the  sys t em is  i n  the l i n e a r  t r ack ing  mode, t he  c losed  loop 

t r a n s f e r  func t ion  i s  

Y 10K 
$ 8 )  

( 8  +4s+13)+ E K(s2+4s+13) 

10K 9 (4-17) 
= 2  10 (s +4s+13) (s+ 5 K) 

where K i s  the  ampl i f i e r  ga in  i n  t h e  l i n e a r  region.  This i n d i c a t e s  t h a t  

t he  c losed  loop system has poles a t  s Both the  
10 

-2  c f j 3  and s a -5 K. 
t i m e  cons t an t  and the  r e s idue  a s soc ia t ed  wi th  t h e  real pole are very  

small, and the  na tu re  of t he  system re sponse - i s  t h e r e f o r e  determined by 

the  p a i r  of complex conjugate  poles i f  K i s  l a r g e .  The v e l o c i t y  e r r o r  

c o e f f i c i e n t  is  a l s o  determined to  a good approximation by the  complex 

conjugate  po le s  i f  t h e  ga in  i n  the  l i nea r  region is high.  This i s  given 

by (Truxal ,  1955) 

3 
(4-18) 
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This indicates that as K becomes large, K is determined by the location 

of the complex conjugate poles. The significance of these results is 

that the system can be designed for the desired characteristics in the 

linear region without being bothered by stability problems when operating 

in the nonlinear region. 

V 

The equivalent system for studying the closed loop response is 

shown in Figure 4-7a. For the purpose of illustrating the procedure 

for calculating the response from this equivalent system, it is assumed 

that the amplifier has the characteristics shown in Figure 4-7b. It is 

also assumed that at t = 0, the antenna is pointing in a direction 10 

ahead of the satellite in the line of travel and that the satellite is 

moving with respect to the antenna at the rate of one degree per minute. 

The location of the satellite is taken as the reference position. Thus 

the system begins operating in the saturation region, with an activating 

signal of -10 . 
alent system is found by the isocline method and is shown in Figure 4-8.  

ine relerence signa?, r = t, i s  also shown inthis figure. When 

-1 + t c x i  c 1 + t, l a l <  1 and the system is operating in the linear 
regiono The graph shows chat the system operates in the linear region 

after approximately 0.4 seconds. With the xi of Figure 4-8 as the input 

to the linear portion of the equivalent system, the output of the closed 

loop system can be found. One way of calculating this output is to 

approximate the input to the linear portion of the equivalent system by 

a piece-wise linear function. Due to the low-pass characteristics of 

most control systems, this approach will usually yield a good approxi- 

mation to the output. Where this approach is not practical, graphical 

convolution can be used. 

0 

0 The output, x i ,  of the nonlinear portion of the equiv- 

d 

- -  - 
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Figure 4 - 7 a .  

in Example 4 - 3 .  

Equivalent System for Determining the Closed Loop Response 

, b 

30 

Figure 4 - 7 b .  Nonlinear Amplifier Characteristics for Example 4 - 3 .  
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In this example, x;, can be approximated by the function 

x;(t) 8 10u(t)-23tu(tj i 24(t-.42)u(t-.42). (4-14 j 

(It is nored that u(t) represents a unit step function and is not the 

same u as is used for the system c o n t r o l  function thrniighout t h i s  

dissertation.) From Equation 4-19, 

(4-20) 

Combining this expression with the transfer function of the linear 

portion of the system and noting that both x;(t) and y(t) are equal to 

l o o  at t = o gives, after rearranging, -. 42s 23 17 1 5.4+7.1s + 24e 
2 Y ( s )  = - - + &  - 

s2+4s+1 3 S 
2 8 

S 

-. 42s 7.4e-*42s 5.6+7.4s) e 

s +4s+13 + (  2 
- 

0 
9 

(4-21) 

From this equation, after combining terms and simplifying, 

y(t) f 17.lu(t)-7.4u(t-.42)-23tu( t)+24( t-. 42)u(t-. 42) 

- 7; hSe-2tcos(3t+22. S O ) U ( t >  

+ 8. 26e-2(t-*42)c0s [ 3 ( t - .  42)+22.5O]u(t-. 42) . (4-22) 

Equation 4-22 is the approximate output of the system operating under 

the assumed conditions. The graph of this output is shown in Figure 4-9. 

The system of Example 4 - 3  was simulated on an analog computer, 

and the resulting response shown in Figure 4-10 agrees reasonably well 

with the calculated response shown in Figure 4-9. The gain in the 

linear region was varied between 12 and 700 with the only noticeable 

change in the response being a small increase in the overshoot as the gain 

was increased. Thus the results of the simulation indicate that the 

system is indeed insensitive to large variations in the gain. 
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The SVF Method for Time-Varying Systems 

In this section, the application of the proposed design procedure 

to time-varying (or time varying and nonlinear) gains is considered. 

The system equations are the same as in the nonlinear case except that 

Equation 4-2 becomes 

The design procedure for time-varying systems is exactly the same 

as that for nonlinear systems. Equations 3-27 and 3-28 indicate that 

the modified plot of G ( s ) H  ( s )  for the resulting system never crosses 

into the second or third quadrants. Therefore the Popov criterion for 

time-varying systems as given in Equation 2-17 is always satisfied, and 

eq 

the system is absolutely stable for all time-varying (or time-varying 

and nonlinear) gains of the type being considered. An equivalent system 

for input-output relations can be derived in the same manner as for non- 

linear systems, with the only difference being that the gain in the system 

of Figure 4-3b will be time-varying. Because of the restrictions on the 

time varying gain as given by conditions 2-4 through 2-6, Equation 4-10 

can again be used as a V function to show that the output is bounded for 

bounded inputs. 

The system configuration of Example 4-3 might also be used as 

an illustration of the application of the design procedure to time- 

varying systems. In fact, the feedback coefficients calculated in this 

example would be the same for any nonlinear and/or time varying gain 

(with the exception noted below) as long as the desired location of the 

closed loop poles remain constant. The only exception is that the gain 

cannot be equal to zero for u # 0. This restriction follows from the 
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Summary 

me method of designing l i n e a r  gain i n s e n s i t i v e  systems has 

been extended t o  develop a design procedure f o r  a c e r t a i n  class of non- 

l i n e a r  and/or time-varying systems. The procedure i s  based on r e a l i z i n g  

a desired. equivaient  feedback c r a n s f e r  func t ion ,  neq(s j ,  by feeding back 

a l l  the s t a t e  v a r i a b l e s  i n  t h e  proper l i n e a r  combination. The r e s u l t i n g  

system has the following s i g n i f i c a n t  f e a t u r e s :  

1. The abso lu te  s t a b i l i t y  s e c t o r ,  as determined from t h e  Popov 

theorem, inc ludes  the e n t i r e  f i r s t  and t h i r d  quadrants.  

2 .  The output  of the closed loop system i s  bounded f o r  bounded 

i n p u t s  . 
3 .  The c losed  loop system can be represented by an equivalent  

system f o r  input-output r e l a t i o n s  c o n s i s t i n g  of a f i r s t  o rde r  

non l inea r  and/or t i m e  varying po r t ion  i n  series w i t h  an ( n - 1 ) s t  

o r d e r  s t a b l e  l i n e a r  po r t ion .  This equ iva len t  system can be 

used t o  f i n d  the approximate output  f o r  a given inpu t .  

4 .  i n  c e r t a i n  cases ,  the dominant t i m e  constanc,  band widch, 

and overshoot of t h e  c losed loop system f o r  any input  are 

determined pr imari ly  by t h e  cons t an t  l i n e a r  po r t ion  of t he  

equ iva len t  system and are e s s e n t i a l l y  independent of t h e  non- 

l i n e a r  and/or t i m e  va ry ing  gain.  

I n  systems where the ope ra t ion  i s  l i n e a r  f o r  normal c o n t r o l  

s i g n a l s  but nonl inear  f o r  l a r g e  c o n t r o l  s i g n a l s ,  i t  i s  poss ib l e  

t o  design f o r  t h e  desired ope ra t ion  i n  the  l i n e a r  region 

without having t o  worry about system s t a b i l i t y  f o r  l a r g e  

c o n t r o l  s i g n a l s .  

5 .  
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6 .  The closed loop system i s  l i n e a r i z e d  t o  the e x t e n t  t h a t  

(n-1) of the closed loop poles  a r e  equal  t o  (n-1) of t he  

open loop po le s  of the l i n e a r  p l a n t ,  independent of t he  non- 

l i n e a r  gain.  

The design procedure, unlike most non l inea r  and/or time- 

va ry ing  design methods, presents  no real computational d i f f i c u l t i e s .  

It r e q u i r e s  the s o l u t i o n  of n l i n e a r  a lgeb ra i c  equat ions where n i s  the  

o r d e r  of the l i n e a r  p a r t  of the system, G ( s ) .  It i s  t h e r e f o r e  a p p l i c a b l e ,  

i n  a p r a c t i c a l  sense,  t o  high order systems. 

I n  general ,  series compensation cannot be used i n  the bas i c  

des ign  procedure un le s s  such compensation can be loca ted  i n  t h e  system 

so  t h a t  t h e  non l inea r  and/or t i m e  varying gain remains i n  the  r e l a t i v e  

p o s i t i o n  i n  the system shown i n  Figure 4-1. I n  the  next chap te r ,  consid- 

e r a t i o n  i s  given t o  some p r a c t i c a l  a s p e c t s  of t h e  design procedure and 

t o  i t s  poss ib l e  extension t o  include systems t o  which t h e  bas i c  procedure 

cannot be app l i ed .  



CHAPTER V 

I n t r o d u c t i o n  

The design procedure of t h e  previous chap te r  is  based on the  

assumption t h a t  a l l  t h e  s t a t e  v a r i a b l e s  can be measured and fed back 

i n  t h e  proper l i n e a r  combination t o  f o r c e  t h e  zeros  of  t h e  r e s u l t i n g  

H ( 8 )  t o  be e x a c t l y  equal  t o  n-1 of t h e  poles  of G(s) .  Since exac t  

pole-zero c a n c e l l a t i o n  i s  never p o s s i b l e  i n  a phys ica l  system, the  

e f f e c t  of small d i f f e r e n c e s  between t h e , z e r o  l o c a t i o n s  of H ( s )  and 

t h e  corresponding po le  l o c a t i o n s  of G(s) i s  of i n t e r e s t .  

is  considered i n  t h e  s e c t i o n  on s t r u c t u r a l  s t a b i l i t y  a t  t h e  beginnine 

of  t h i s  chapter .  

eq 

eq 
This ques t ion  

The l a s t  p a r t  of t h i s  chapter i s  concerned with p o s s i b l e  methods 

of  extending t h e  design procedure t o  c e r t a i n  svstems where t h e  b a s i c  

procedure cannot be used. F i r s t ,  p o s s i b l e  methods by which t h e  b a s i c  

procedure can be extended to  sys t ems  i n  which t h e  non l inea r  and/or 

time-varying gain i s  no t  located i n  t h e  p o s i t i o n  shown I n  Figure 4-1 

are discussed.  Then t h e  p o s s i b i l i t y  of using t h e  design procedure t o  

design systems having a f i n i t e  s t a b i l i t y  s e c t o r  i n  c e r t a i n  cases where 

an i n f i n i t e  s e c t o r  of s t a b i l i t y  cannot be achieved is  considered. 

a r educ t ion  i n  t h e  s e c t o r  of s t a b i l i t y  r e s u l t s  i n  less s t r i n g e n t  con- 

s t r a i n t s  on t h e  open loop Rain, C ( s ) H  ( 8 ) .  

Such 

eq 

98 
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S t r u c t u r a l  S t a b i l i t y  of t he  System 

The d i scuss ion  of s t a b i l i t y  i n  t h e  previous chapter  i s  based on 

t h e  p r e m i s e  t h a t  t h e  zeros  of H (s)  can be made t o  occur a t  the exact  

i ocac ions  or' the poies of G(a i .  Since  percrct p o l e z e r o  eziics1latiori 

cannot be achieved i n  a physical  system, t h e r e  w i l l  be d i f f e r e n c e s  i n  

t h e  l o c a t i o n s  of t h e  zeros  of H (s) and t h e  correspondina poles  of G(s) .  

A s  a consequence, t h e  expressions f o r  G ( s ) H  (s) Riven i n  Equations 3-27 

and 3-28 w i l l  have n-1 a d d i t i o n a l  po le s  and zeros.  These a d d i t i o n a l  

c r i t i ca l  frequencies  have t h e  property t h a t  t h e  zeros  are almost equal  

t o  t h e  poles .  Thus t h e  question of i n t e r e s t  becomes: "How u s e f u l  is 

t h e  approximation of Equations 3-27 and 3-28 i n  a phys ica l  system?" 

answer t o  t h i s  quest ion l i es  in t h e  s t r u c t u r a l  s t a b i l i t y  p r o p e r t i e s  of t h e  

system. I f  i t  can b e  shown t h a t  small chanRes i n  t h e  system parameters do 

n o t  r a d i c a l l y  a f f e c t  t h e  nature  of t h e  system response,  then r e s u l t s  ob- 

t a i n e d  from Equations 3-27 and 3-28 should be v a l i d  approximations t o  t h e  

eq 

eq 

eq 

The 

a c t u a l  system respoiise. 

The e f f e c t  of small d i f f e rences  i n  t h e  corresponding po le s  and 

ze ros  of G(s) and H (8) on the abso lu te  s t a b i l i t y  of t h e  system i s  con- 

s i d e r e d  f i r s t .  Using t h e  Popov s t a b i l i t y  c r i t e r i o n ,  a n a l y t i c a l  r e s u l t s  

are obtained which i n d i c a t e  t h a t  t h e  abso lu te  s t a b i l i t y  is no t  g r e a t l y  

a f f e c t e d  by small changes i n  system parameters except i n  those  cases where 

closed loop po le s  occur on o r  nea r  t h e  imaginary axis. 

i n d i c a t e  how much v a r i a t i o n  i n  t h e  po le  and ze ro  l o c a t i o n s  can be  t o l e r -  

a t e d  without  t h e  abso lu te  s t a b i l i t y  p r o p e r t i e s  of t h e  system beinn 

s e r i o u s l y  a f f ec t ed .  

eq 

These r e s u l t s  
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The quest ion of absolute  s t a b i l i t y  i s  i n v e s t i q a t e d  from t h e  stand- 

p o i n t  of t he  a d d i t i o n a l  phase s h i f t  introduced i n t o  C ( s ) H  

d i f f e r e n c e s  i n  corresponding pole and zero loca t ions .  Zeros of H (s) 

and t h e  corresponding poles  of G(s) t o  which they are n e a r l y  equal  are 

r e f e r r e d  t o  as pole-zero p a i r s  i n  t h e  d i scuss ion  which follows. 

( 8 )  by small 
eq 

eq 

Only t h e  e f f e c t  of a s i n g l e  pole-zero p a i r  i s  considered for po les  

and zeros  on t h e  real a x i s .  For complex conjugate po le s ,  two pole-zero 

p a i r s  must be considered. The r e s u l t s  can then be used t o  determine t h e  

e f f e c t  of d i f f e r e n c e s  i n  t h e  zero and po le  l o c a t i o n s  of any pole-zero p a i r  

i n  t h e  system. 

The diagram of Figure 5-1 is used t o  determine Reneral r e s u l t s  

f o r  a r b i t r a r y  pole-zero loca t ions  which are then used i n  d i scuss ing  more 

s p e c i f i c  cases. From Figure 5-1 t h e  t o t a l  phase s h i f t  of t h e  two  p a i r s  

of complex conjugate po le s  and zeros  i s  

Tie first two terms rep resen t  the phase s h i f t  con t r ibu ted  by t h e  poie- 

zero p a i r  i n  t h e  upper h a l f  plane, and t h e  las t  two terms rep resen t  t h e  

phase s h i f t  con t r ibu ted  by t h e  lower h a l f  plane pole-zero p a i r .  

t h e  expressions f o r  t he  phase s h i f t  con t r ibu ted  bv t h e  two pole-zero pairs 

are similar,  t h e  l a s t  two terms are nefqlected f o r  t h e  p re sen t ,  piving 

Since 

From t h i s ,  

a b 2 2 2  
= E (a-b)-2acg+a(b +c -ab). - = - -  

2 2 
d E  a2+Q2 b +(k-c) 

( 5 - 3 )  

S e t t i n g  Equation 5-3 equal  t o  zero gives  the  fo1lowinr;t expression f o r  t h e  

values  of I a t  which 6 reaches its  extreme p o s i t i v e  and nega t ive  values:  1 
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Figure 5-1. 

the Pole-Zero P a i r s .  

Diagram Used i n  Determining the  Phase S h i f t  Contributed by 



ac  +'ab(a-b) 2 +abc 2 - R =  0 

a-b 
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( 5 - 4 )  

_- 
The maximum phase s h i f t  due t o  the complex pole-zero p a i r  can be  found by 

s u b s t i t u t i n g  the  va lue  of 11 found from Equation 5-4 i n t o  Equation 5-2. 

maximum to ta l  phase s h i f t  cont r ibu ted  by the  two complex coniuaa te  gole- 

zero  p a i r s  w i l l  always be l e s s  than twice  t h i s  value.  

Equations 5-4 and 5-2 can a l s o  be used t o  determine the  maximum phase 

The 

I 

With C 0, 

s h i f t  due t o  a pole-zero p a i r  on the  real a x i s .  

Equations 5-2 through 5-4 a r e  now used t o  i n v e s t i a a t e  s p e c i f i c  

cases of po le  and zero  loca t ions .  

Case I: The pole  and zero are real wi th  a = 0.9b. Riving a 109 d i f f e r e n c e  

between t h e  pole  and zero loca t ions .  From Equation 5-4 t he  maximum phase 

s h i f t  occurs  a t  

- 

R = 5 Jo,sb2 - 2 0.95b. 

Since only  p o s i t i v e  va lues  of frequency are of interest, only the  nega t ive  

va lue  of is  considered. S u b s t i t u t i n g  i n t o  Equation 5-2 gives  

( 5 - 5 )  -1 0 = - tan  (1.06) + tan-'(0.95) = -3.2 . 
maX 

e 

For b = 0.9a, t h e  maximum phase s h i f t  has  t h e  same magnitude b u t  oppos i te  

s ign .  Thus t h e  maximum phase s h i f t  for a 10% d i f f e r e n c e  i n  t h e  l o c a t i o n s  

of a real axis pole  and ze ro  is 5 3.2'. 

Case 11: There are two complex conjugate  pole-zero p a i r s  wi th  c = 0 and 

the  r a t i o  between a and b = 0.9. Here, the  magnitude of t h e  t o t a l  phase 

s h i f t  from t h e  two pole-zero p a i r s  i s  always less than twice t h a t  of 

Equation 5-5, o r  6.4'. This  is a conserva t ive  upper l i m i t  f o r  t he  phase 
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s h i f t ,  as i t  w i l l  i n  gene ra l  be considerably less, s i n c e  t h e  maximum 

from t h e  two pole-zero p a i r s  w i l l  no t  occur a t  t h e  same frequency. 

Case 111: There are two complex conjugate  pole-zero p a i r s  wi th  a = 0.9b 

and c = O.lb. From Equation 5-4, t h e  maximum phase s h i f t  caused by t h i s  

d i f f e r e n c e  i n  t h e  upper h a l f  plane pole-zero p a i r  is  found t o  occur  a t  

R = 0.44b. 

s h i f t  of 7.2'. 

t h e  lower h a l f  p l ane  is  no more than t h i s ,  t h e  maximum phase s h i f t  con- 

t r i b u t e d  by the  complex conjugate pole-zero p a i r s  i s  seen  t o  be less than 

14.4'. Again t h i s  is a conserva t ive  upper l i m i t  f o r  t h e  maximum phase 

s h i f t ,  which w i l l  i n  genera l  be considerably less. 

Case I V :  

t o t a l  phase s h i f t  f o r  p o s i t i v e  f requencies  comes from the  pole-zero p a i r  

i n  t h e  upper h a l f  plane.  From Equation 5.1, t h i s  i s  

S u b s t i t u t i n g  t h i s  i n t o  Equation 5-2 i n d i c a t e s  a maximum phase 

S ince  t h e  maximum phase s h i f t  from t h e  pole-zero p a i r  i n  

There are two imaginary pole-zero p a i r s  wi th  a = b = 0. The 

-1 - trrn I *  -1 & 
a a 6 =  lim [ t a n  a,& 0 (5-6) 

This  i s  always zero  except f o r  f requencies  between t h e  po le  and zero ,  

where 8 = 2 180'. 

The a b s o l u t e  s t a b i l i t y  of a system designed by t h e  proposed method 

can now be considered without  t h e  u n r e a l i s t i c  assumption t h a t  t h e  zeros  of 

H From t h e  n a t u r e  of t h e  

i d e a l  open loop t r a n s f e r  func t ion ,  G ( s ) H  

3-27 and 3-28, i t  is apparent  t h a t  n o t  only i s  t h e  Popov s t a b i l i t y  c r i t e -  

r i o n  of Equations 2-7 o r  2-8 s a t f s f i e d  for any non l inea r  ga in  of t he  type 

be ing  considered,  bu t  it w i l l  cont inue t o  be s a t i s f i e d  f o r  any change i n  

G ( s ) H  ( 6 )  t h a t  r e s u l t s  i n  a change i n  the  phase s h i f t  of G ( s ) H  (s) of 
eq eq 

(s) can be made e x a c t l y  equal t o  po le s  of G ( s ) .  
eq 

(s) ,  as given by Equations 
eq 



104 

I n  fact, t h e  Popov c r i t e r i o n  f o r  non l inea r  systems can less than 90'. 

be  s a t i s f i e d  i n  some cases f o r  maximum changes g r e a t e r  than 90' i f  t h i s  

maximum change does no t  occur  a t  the.same frequency as t h e  maximum phase 

s h i f t  i n  t h e  i d e a l  case, or i f  t h e  s im of t h e  change is such as t o  re- 

duce t h e  t o t a l  phase s h i f t .  

Figures  5-2a through 5-2e i l l u s t r a t e  f u r t h e r  t he  e f f e c t  of d i f -  

f e r ences  i n  t h e  l o c a t i o n s  of the p o l e  and zero of a pole-zero pair. A 

t h i r d  o r d e r  system w i t h  one i n t e g r a t i o n  i s  used i n  these  examples. The 

pole-zero p l o t  is  shown on t h e  l e f t  and t h e  correspondinR modified f r e -  

quency p l o t  on t h e  r i g h t .  Figures 5-2d and 5-2e i n d i c a t e  t h a t  t h e  rela- 

t ive  displacement of t he  po le  and ze ro  i s  important f o r  pole-zero pairs  

near the imaginary axis .  Figure 5-2d a l s o  i n d i c a t e s  t he  p o s s i b i l f t y  of 

designing f o r  abso lu t e  s t a b i l i t y  i n  a f i n i t e  s e c t o r  where it is n o t  

p o s s i b l e  t o  inc lude  the e n t i r e  first and t h i r d  quadrants i n  t h e  s t a b i l i t y  

s e c t o r .  

Systems w i t h  time-varying gains  must s a t i s fy  s t r o n g e r  cond i t ions  

f o r  s t a b i l i t y  than those f o r  non l inea r  gains.  Equation 2-17 i n d i c a t e s  

t h a t  t h e  modified p l o t  must never c r o s s  i n t o  t h e  second o r  t h i r d  quad- 

r a n t s  i f  t h e  s t a b i l i t y  s e c t o r  of t h e  system i s  t o  he i n f i n i t e .  Figures  

5-2b and 5-2c suggest two possible  approaches i n  t h e  time-varvinF case* 

1) I n t e n t i o n a l l y  d i s p l a c e  t h e  zeros of H (9) as shown i n  Figure 5-2b. 

2) Design f o r  a f i n i t e  s t a b i l i t y  s e c t o r .  I n  most cases, i n f i n i t e  

s t a b i l i t y  s e c t o r s  are n o t  required.  

eq 

The above d i scuss ion  leads t o  t h e  fol lowing conclusions concerning 

t h e  a b s o l u t e  s t a b i l i t y  of a physical  system designed by t h e  proposed method: 
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Figure 5-2e 

Figure 5-2. 

of the Pole and Zero of a Pole-Zero Pair. The Pole-Zero Diagram of a 

Third Order System is shown on the L e f t ,  and the Corresponding Modified 

Frequency Plot is Shown on the Right. 

Illustrations of the Effect of Differences in the Locations 
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I 

1. Except f o r  systems with pole-zero pa i r s  on o r  nea r  t h e  

imaginary axis ,  t he  abso lu te  s t a b i l i t y  s e c t o r  €o r  systems 

wi th  non l inea r  Rains is i n f i n i t e .  

2.  Where a b s o l u t e  s t a b i l i t y  cannot be  assured f o r  an i n f i n i t e  

sector because of pole-zero p a i r s  nea r  t h e  imaginary ax i8  

i t  might be poss ib l e  t o  design f o r  a f i n i t e  abso lu t e  sta- 

b i l i t y  s e c t o r .  

3. I n  the  time-varying case ,  i t  is  n e c e s s a n  t o  

d i s p l a c e  t h e  zeros  of H 

an i n f i n i t e  absolu te  s t a b i l i t y  s e c t o r .  

(s) i n  t h e  proper  d i r e c t i o n  t o  a s s u r e  
eq 

The c losed  loop response w a s  determined i n  Chapter 4 by making use 

of an equ iva len t  eystem cons i s t ing  of an  ( n - l ) s t  o rder  l i n e a r  p a r t  and a f i r s t  

o r d e r  nonl inear  and/or  t ime varying p a r t  i n  series. 

H ( 8 )  are n o t  e x a c t l y  equal  t o  the  po le s  of G(s), t h e  non l inea r  and/or  

time-varying p a r t  of t h i s  equivalent  system has t h e  form shown i n  Figure 

5-3. 

ponding po le s ,  and t h e  quest ion of s t r u c t u r a l  s t a b i l i t y  again becomes 

important  i n  determining whether t h e  output  of t he  equiva len t  svstem i s  

a v a l i d  approximation t o  the  closed loop output  of t he  a c t u a l  system. 

Because t h e  non l inea r  and/or  time-varying ga in  cannot be separa ted  i n t o  

a f i r s t  o rde r  p a r t  of t h e  equiva len t  system, i t  does not  appear p o s s i b l e  

t o  determine genera l  a n a l y t i c a l  r e s u l t s  which a s s u r e  t h a t  t h e  equ iva len t  

When t h e  zeros  of 

eq 

I n  t h i s  equiva len t  eystem, t h e  zeros  a r e  almost equal  t o  t h e  cor res -  

system of Chapter 4 is v a l i d  f o r  a phys ica l  syetem. 

known p r o p e r t i e s  of t he  system i n d i c a t e  t h a t  t h e  equ iva len t  system is  a 

good approximation t o  t h e  phys ica l  system. C e r t a i n  a n a l y t i c a l  r e s u l t s  

However, a l l  t he  
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Figure 5 - 3 .  

Zeros of H 

are Much Smaller Than the P 

The Form of the Nonlinear Portion of the System When the 

(s) are not Exactly Equal to  the Poles of G(s) .  The 6i 
p'9 

i' 
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can be  obtained f o r  s p e c i f i c  systems. For example, a r e s u l t  of Zames  

i 

I 

(1966) is used t o  show t h a t  t h e  output  of t h e  system i s  bounded f o r  

bounded i n p u t s  i f  t he  s t a b i l i t y  sector i s  no t  r eau i r ed  t o  be  i n f i n i t e  

and i f  only t h e  p r i n c i p a l  case is considered. 

The r e s u l t s  r epor t ed  bv Z a m e s  g ive s u f f i c i e n t  condi t ions f o r  a 

bounded closed loop ou tpu t  when t h e  i n p u t  is  bounded. The cond i t ions  

apply t o  t h e  type system considered i n  t h i s  d i s s e r t a t i o n  i f  a l l  t h e  p o l e s  

of G ( s )  axein t h e  l e f t - h a l f  plane,  The r e s u l t  of i n t e r e s t  i s  c a l l e d  t h e  

Circle Theorem and is  g iven  here i n  t h e  following! form: 

I f  t h e  n o n l i n e a r i t y  is  i n s i d e  a s e c t o r  {K ,K2), and i f  t h e  f r e -  
quency response of  G ( s )  avoids a "c r i t i ca l  region" i n  t h e  complex 
p l ane ,  then t h e  c losed  loop output  i s  bounded f o r  bounded inpu t s :  
i f  K1 > 0 then t h e  " c r i t i c a l  region" if a d i s k  whose c e n t e r  i s  
halfway between t h e  p o i n t s  - 1 
g r e a t e r  than t h e  d i s t a n c e  between t h e s e  p o i n t s .  

> - 1 + 8 ,  where 6 > 0. 

and - - , and whose diameter i s  
K1 K2 

cond i t ion  corresponding t o  t h i s  "cr i t ical  region" 
- -  

K2 

A g raph ica l  i l l u s t r a t i o n  of t h e  above theorem is Riven i n  Figure 

5-4 .  I f  f (a) vs. u and G ( j w )  l i e  i n  t h e  shaded regions,  then t h e  closed 

loop response i s  bounded f o r  bounded inpu t s .  

Popov c r i t e r i o n  i n  Chapter 2,  K 

t o  K2. 

I n  t h e  d i scuss ion  of  t h e  

w a s  t a k e n - t o  be  ze ro  and K corresponds 1 

From t h e  above theorem and preceding d i scuss ion  i t  fol lows t h a t  

a system designed by t h e  proposed procedure,  i n  which G ( s )  has no po le s  

on t h e  imaginary axis ,  w i l l  have a bounded closed loop response f o r  

bounded i n p u t s  i f  t h e  n o n l i n e a r i t y  is confined to an appropr i a t e  f i n i t e  

I 
s e c t o r .  Since t h e  ga ins  i n  p r a c t i c a l  systems are n o t  i n f i n i t e ,  t h e  
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Figure 5-4. Illustration of the Circle Theorem. If f(u) vs.  

u and G ( j w )  lie in the Shaded Regions and i f  the Nyquist Diagram 

of G(jo) does not Encircle the Critical Disc, the Closed Loop is 

Rounded. 
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s e c t o r  determined from t h i s  theorem wi th  appropr i a t e  t o l e rances  placed 

on the  pole  and zero  l o c a t i o n s  w i l l  be  a l l  t h a t  i s  requi red  i n  many 

cases .  

The equiva len t  system of F igure  5-3 w i l l  now be considered.  It 

i s  assumed t h a t  none of t h e  complex conjugate  pole-zero p a i r s  a r e  near  

enough t o  the  imaginary axis t o  cause excess ive  overshoot t o  occur o r  

t o  cause the  l i n e a r  system t o  go uns tab le  f o r  s m a l l  changes i n t h e  pole  

and zero l oca t ions .  From t h i s  assumption and t h e  f a c t  t h a t  t he  t r a n s f e r  

func t ion  between x' and x' is l i n e a r ,  s t a b l e ,  and approximately equal  t o  

u n i t y ,  one i s  led  t o  expect  the response a t  x i  t o  be very  n e a r l y  equal  t o  

t h e  output ,  x '  

t h i s  is e x a c t l y  t h e  case  i n  t h e  equiva len t  system of Chapter A ,  so it  

appears  poss ib l e  t o  use t h e  equiva len t  system with a hiph degree of con- 

f idence  except  i n  those  cases having closed loop po le s  on or  near  t he  

imaginary a x i s .  The confidence i n  t h i s  conclusion i s  increased  s t i l l  

n 1 

of t h e  nonl inear  po r t ion  of t he  equiva len t  system. R u t  n' 

f u r t h s r  in those cases vhe re  both tho input  2nd t h e  non l inea r  rmd!nr t i m e -  

vary ing  c h a r a c t e r i s t i c  are r e l a t i v e l y  smooth. The requirement t h a t  t h e  

c losed  loop poles  be  constrained t o  be  away from t h e  imaginary axis i s  i n  

agreement wi th  t h e  r e s u l t s  of the  d i scuss ion  on abso lu te  s t a b i l i t y .  

The f i n a l  conclusion from t h e  above d i scuss ion  i s  t h a t  systems 

designed by t h e  proposed method can be  expected t o  be  s t r u c t u r a l l y  s t a b l e  

except  i n  those  cases having closed loop poles on o r  near  t h e  imaginary 

ax i s .  Ana ly t i ca l  r e s u l t s  are given which i n d i c a t e  t h e  e x t e n t  of t he  e f f e c t  

of s m a l l  changes i n  t h e  pole and zero l o c a t i o n s  on t h e  abso lu te  s t a h i l i t y  

of t h e  system. General a n a l y t i c a l  r e s u l t s  were no t  obtained t o  i n d i c a t e  
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t h e  e x t e n t  of t h e  e f f e c t  of such changes i n  t h e  case of t he  closed loop 

response,  but reasons a r e  given f o r  expect ing t h e  equiva len t  system 

developed i n  Chapter 4 t o  give a good approximation t o  the  a c t u a l  c losed 

loop response.  The r e s u l t s  of analoR computer s imula t ions ,  one of which 

is repor t ed  i n  Example 4-3, support  t h i s  conclusion.  

E f f e c t  of t he  Location of t he  Nonlinear and/or  “me-Varying Gain 

The b a s i c  design procedure of feeding back a l l  t h e  s t a t e  v a r i a b l e s  

i n  order t o  realize a des i r ed  H 

and/or  time-varying gain i s  located a r b i t r a r i l y  i n  t h e  system. 

for t h i s  is i l l u s t r a t e d  by PiRure 5-5a. I n  t h i s  system an equiva len t  

feedback func t ion  H ( 8 )  

independent ly  of t h e  Rain N. No Reneral  procedure f o r  handl ing such Droh- 

l e m s  appears  t o  be b e s t  f o r  a l l  systems. Consequently, it i s  t r e a t e d  he re  

by sugges t ing  the  fol lowing poss ib le  procedures  based on t h e  systems shown 

i n  Figures  5-5a through 5-5c. 

Method 1: 

can be measured and fed back, the equiva len t  feedback func t ion  i s  

( 8 )  is  not  a p p l i c a b l e  when the  non l inea r  
eq 

The reason 

from t h e  output  t o  t h e  inpu t  cannot he obtained 
eq 

I f  t he  ga in  N is located as shown i n  Figure 5-5b and i t s  output  

Heq(s) = k4(s+b)(s+c)(s+d) + kg (s+c)(s+d) + k2 (s+d) + 1, 

and t h e  r e s u l t  is t h e  same as when t h e  gain is loca ted  as shown i n  F iau re  

4-1. 

Method 2: I f  t he  ga in  N i s  a s a t u r a t i o n  tvpe,  i t  i s  i n  some cases  p o s s i b l e  

t o  in t roduce  another  s a t u r a t i o n  type gain a t  t h e  inpu t  which w i l l  p revent  

t h e  o r i g i n a l  n o n l i n e a r i t y  from s a t u r a t i n g  f o r  any inpu t .  

then equiva len t  t o  a system with one n o n l i n e a r i t v  a t  t he  Droner l o c a t i o n  

f o r  applying the  proposed design procedure.  

Therefore  t h e  b a s i c  procedure a p p l i e s .  

The system i s  

This  method could a l s o  be 

t 
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Figure 5-5a. 
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Figure 5-5b. System Configuration for Metkod 1. 

Figure 5-Sc. System Configuration for Method 2. 
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used i n  some cases  t o  extend the desip;n procedure t o  spstems with mult i -  

p l e  s a t u r a t i o n  type n o n l i n e a r i t i e s .  This  approach could not  be used 

when pure i n t e g r a t i o n s  are present  between t h e  input  and t h e  non l inea r i ty .  

Method 3: For a feedback conf igura t ion  such as t h a t  shown i n  Figure 5-5c, 

t h e  equiva len t  feedback funct ion is  

Heq(s) = k4(s+a)(s+b)(s+d) + k3(s+a)(s+d) + k2(s+d) + 1. 

This  i s  t h e  same type of equation as t h a t  obtained from t h e  b a s i c  feedback 

conf igu ra t ion  of Figure 4-1, so t h a t  t h e  ki can be  found i n  t h e  same manner 

as before .  From Figure 5-5c and t h e  equat ion above, i t  is apparent  t h a t  

H ( 8 )  cannot have zeros  equal  t o  t h e  (n-1) poles  of G(s) t h a t  are ou t s ide  

t h e  i n n e r  loop with k4 as t h e  feedback element, as t h i s  would r equ i r e  t h a t  

k4 = QO. 

t o  feed back i n t o  t h e  required p o i n t s  i n  t h e  system. 

eq 

The ob jec t ion  t o  t h i s  method is t h a t  it i s  not  u sua l lv  poss ib l e  

T 
Also, s i n c e  u f-k -,-. x,  

t h e  matrix formulat ion of t he  bastc procedure cannot be used here .  

advantage is  t h a t  i t  allows the extension of t h e  b a s i c  procedure t o  systems 

An 

where series compensation i s  des i r ab le  and must be placed i n  f r o n t  of t h e  

nonl inear  and/or time-varying gain.  I n  t h i s  case  i t  w i l l  o f t e n  be poss ib l e  

to feed t h e  output  back' t o  any po in t  i n  the- compensation network. 

An equiva len t  system for  input-output r e l a t i o n s  s i m i l a r  t o  t h a t  

developed above can be  der ived f o r  a l l  these  methods. 

from t h e  previous equ iva len t  system is t h a t  t h e  s inRle order  nonl inear  and/ 

o r  time-varying p a r t  w i l l  appear i n  t h e  middle of t h e  l i n e a r  p a r t  f o r  

The only d i f f e r e n c e  

Methods 1 and 3. 

The determinat ion of  the  feedback c o e f f i c i e n t s  i n  Methods 1 and 2 

i s  no d i f f e r e n t  from the  bas i c  procedure,  

has been determined from the  block diagram i n  Method 3, t h e  c a l c u l a t i o n  

Once t h e  expression f o r  H (s) e u  
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of t h e  k i s  accomplished as in 

i n t e r e s t i n g  t o  no te  t h a t  in t he  

i 

11s 
t h e  b a s i c  design procedure. T t  is 

b a s i c  procedure information concerning 

a l l  t h e  state v a r i a b l e s  is  fed  back t o  t h e  inpu t  i n  order t o  e s t a b l i s h  

t h e  a c t u a t i n g  simal, whi le  i n  Method 3 t h e  output  is fed  back so as t o  

e s t a b l i s h  des i r ed  c o n t r o l  s igna l s  a t  c e r t a i n  p o i n t s  i n  t h e  system. 

I n  many a c t u a l  design problems where t h e  b a s i c  procedure cannot 

be  used, a combination of t h e  above methods might be usefu l .  

i n g  example i l l u s t r a t e s  t he  procedure of Yethod 3. 

Example 5-1: The f ixed  p l m t  of F igure  5-6a is used t o  i l l u s t r a t e  t h e  

The follaw- 

procedure of Method 3. It is assumed t h a t  

a t  s = - - +  j &- - . The first s t e p  i n  the  

f ixed  p l a n t  as i nd ica t ed  i n  PiRure 5-6b so 

2 -  2 

closed loop po les  are des i r ed  

des ign  is t o  compensate t h e  

t h a t  t h e  open loop po le s  w i l l  

be  a t  t h e  des i r ed  l o c a t i o n  of the  c losed  loop poles. The r eau i r ed  feed- 

back conf igu ra t ion  is shown i n  Fiqure 5-6c. Comparing t h i s  wi th  t h e  

equ iva len t  system of Figure 5-6d g ives  

H is) - k3(S2 + s) + k2Stl 0 

eq 

The d e s i r e d  t r a n s f e r  func t ion  must have t h e  form 

(5-71 

H (s) - k3[s2 + s+l] ( 5 - 8 )  
eq 

Equating t h e  corresponding c o e f f i c i e n t s  of Equations 5-7 and 5-8 and 

so lv ing  t h e  r e s u l t i n g  equat ions g ives  

k3 = 1 

k2 -1 

This set  of feedback c o e f f i c i e n t s  produces t h e  d e s i r e d  c losed  loop  po le s  
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1 - 
S 

f - 1 
N s + 2  

1 
s + l  

A 

Figure 5-6s. The Plant t o  be Controlled i n  Example 5-1 .  

Figure 5-6b. Compensation of the Plant of Example 5-1 t o  Force the Open 

Loop Poles to be a t  the Desired Location of the Closed Loop Poles. 

4 

Y 1 
s + 2  
- 1 - 

8 

- 

I 
I 

i .  

Figure 5 - 6 c .  Method of Controlling the Plant of Example 5-1.  

1 = X  

Figure 5-6d. An Equivalent System for Figure 5-6c. 
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a t  s = - y + j  7 , independent of t h e  nonl inear  and/or time-varylng 

gain.  

One poin t  of i n t e r e s t  i s  t h a t  t h e  feedback shown i n  FiRure 5-6b 
\ 

changes the type sf the system. I f  zero s teady  s ta te  e r r o r  i s  des i r ed ,  

another  i n t e g r a t o r  must b e  added t o  t h e  system. This  would r e q u i r e  an 

a d d i t i o n a l  feedback path as i t  increases  t h e  o rde r  of t he  system and t h e  

number of s ta te  v a r i a b l e s  by one. 

Design f o r  F i n i t e  Sec tors  of S t a b i l i t y  

A l l  t h e  previous d iscuss ion  is based on t h e  premise t h a t  a l l  t h e  

state v a r i a b l e s  can be f ed  back t o  t h e  des i r ed  p o i n t s  i n  t h e  system t o  be 

compensated. The systems which r e s u l t  from t h e  proposed d e s i m  procedure 

then have i n f i n i t e  s t a b i l i t y  s ec to r s .  

back a l l  t h e  state v a r i a b l e s  as  d e s i r e d .  

It is  o f t e n  not  poss ib l e  t o  feed 

Also, i t  i s  not  u sua l ly  necessary 

t h a t  t h e  s t a b i l i t y  s e c t o r  be i n f i n i t e .  In  t h i s  s e c t i o n ,  t h e  p o s s i b i l i t y  

of designing f o r  a f i n i t e  s t a b i l i t y  s e c t o r  when a l l  t h e  state v a r i a b l e s  

cannot be f ed  back i s  discussed. (The procedure suggested i n  Chapter 3 

f o r  those  cases where a l l  t he  state v a r i a b l e s  cannot be fed back can be 

used i n  t h e  nonl inear  case  as w e l l .  

t i o n a l  poss ib l e  porcedures.)  

The suRgestions here  provide addi- 

Because of t h e  many d i f f e r e n t  s i t u a t i o n s  

t h a t  can arise i n  nonl inear  systems, no a t t e m p t  i s  made t o  provide a 

genera l  so lu t ion .  In s t ead ,  s p e c i f i c  cases of nonl inear  spstems are con- 

s idered .  The same ideas  can be appl ied  t o  time-varying systems, but  t h e  

condi t ions  f o r  abso lu t e  s t a b i l i t y  a r e  more str ict .  

Case I: 

v a r i a b l e s  cannot be fed back. I f  t h e  o t h e r  (n-1) s ta te  v a r i a b l e s  are 

It is assumed t h a t  i n  an nth order  system, one of t h e  state 
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fed  back, i t  fol lows from the  d iscuss ion  of Chapters 3 and 4 t h a t  (n-2) 

of t h e  ze ros  of H (9) can be  loca ted  as des i r ed  by f eed ine  back through 

t h e  proper  cons tan t  gains .  I f  t h e s e  (11-21 zeros  are made equal  t o  po le s  

of G ( s ) ,  t h e  open loop t r a n s f e r  func t ion  has t h e  form 

ecl 

K' 
G(s)Heq(s) (s+a) (s+b) 

o r  

(S -9 )  

(5-11)) 

Theore t i ca l ly ,  t h e  s t a b i l i t y  s e c t o r  i s  i n f i n i t e  because t h e  phase s h i f t  

can never be g r e a t e r  than 180 , so t he  Popov l i n e  can always be drawn 

through t h e  origin.  P r a c t i c a l l y ,  t h e  r e s u l t s  of t he  f i r s t  p a r t  of t h i s  

0 

chap te r  i n d i c a t e  t h a t  t he  s t a b i l i t y  s e c t o r  might become f i n i t e  because 

of t h e  e f f e c t  of t h e  zeros  of H (s) no t  be ing  exactly equal  t o  Doles of 

G(s) .  

eq 

The equiva len t  system fo r  input-output r e l a t i o n s  i s  s imilar  t o  t h a t  

developed i n  Chapter 4 except t h a t  t h e  non l inea r  po r t ion  he re  i s  second 

o r d e r  and t h e  l i n e a r  po r t ion  i s  of o rde r  (n-2). The conf igura t ion  of t h i s  

equ iva len t  system i s  shown i n  Figure 5-7. It i s  poss ib l e  t o  determine t h e  

output  of t h e  nonlinedr por t ion  of t h e  equiba len t  system by us ing  phase- 

p l ane  a n a l y s i s .  With thfs as t h e  inpu t  t o  t h e  l i n e a r  p o r t i o n  of t he  

equiva len t  system, the  output  of t h e  closed loop svstem can be found as 

i n  Example 4-3. 

For t h e  case under cons idera t ion ,  i t  i s  seen t h a t  a b s o l u t e  sta- 

b i l i t y  can be assured  f o r  a f i n i t e  s e c t o r  and t h a t  t h e  output  can be found 

f o r  a given input .  It is obvious t h a t  t he  e f f e c t  of t h e  n o n l i n e a r i t y  can- 

not  be c o n t r o l l e d  t o  the  ex ten t  t h a t  i t  can i n  t h e  case  where a l l  t he  
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Figure 5 - 7 .  

a s  i n  Case I .  G'(s)  i s  of Order n-2. 

Equivalent System When n-1 State Variables are Fed Back 



120 

? 

state  v a r i a b l e s  are fed  back, because now only (11-21 of t h e  c losed  loop 

po les  can be  made independent of t he  non l inea r  gain.  

Case 11: 

a b l e s  cannot be fed  back. I n  t h i s  case t h e  l o c a t i o n  of (n-m-1) of t h e  

c losed  loop poles  can be made independent of t h e  non l inea r  gain. The 

open loop t r a n s f e r  func t ion  w i l l  have (m + 1 )  po le s  and t h e  non l inea r  

p a r t  of t h e  equiva len t  system w i l l  be of o rde r  (m + 1). Thus, a l though 

a f i n i t e  s e c t o r  of s t a b i l i t y  can be r e a l i z e d  and though t h e  o rde r  of t h e  

non l inea r  po r t ion  of t h e  equiva len t  system i s  lower than t h e  o rde r  of 

t h e  a c t u a l  system by (n-m-l), many of t he  advantaRes of t h e  des ign  

procedure are l o s t .  It is no lonRer p o s s i b l e  t o  determine t h e  output  of 

t h e  system by t h e  r e l a t i v e l y  simple procedures used when t h e  non l inea r  

po r t ion  of t h e  equiva len t  system w a s  of order  1 o r  2 .  Nei ther  i s  i t  

p o s s i b l e  t o  show i n  genera l  t h a t  t h e  output  i s  bounded f o r  a bounded in-  

put .  Because of t h i s ,  i t  appears t h a t  t h i s  procedure might be more u s e f u l  

i n  t h e  case of a r e g u l a t o r  system. 

Case 111: 

state v a r i a b l e s  cannot be fed back is t o  r e a l i z e  H 

i n s e r t i n g  a t r a n s f e r  func t ion ,  H '(SI, i n  the  feedback pa th  t o  produce 

the  des i r ed  zeros .  I n  o rde r  t o  make t h i s  t r a n s f e r  func t ion  r e a l i z a b l e ,  

po les  must be added so t h a t  H ' (9 )  w i l l  have as many poles  as zeros .  

t hese  po le s  are added f a r  enough out  on t h e  r e a l  axis,  they w i l l  no t  

apprec iab ly  a f f e c t  t h e  system response except f o r  high ga ins .  

It is  assumed t h a t  i n  an nth o rde r  system, m of t h e  s ta te  v a r i -  

Another p o s s i b l e  approach t o  be  used when one o r  more of t h e  

(s) by a c t u a l l y  
eq 

ea 

If 
eq 

The extreme example of t h i s  case  occurs  when only t h e  output  can 

be  f ed  back. Then H ' ( s )  must have (n-1) zeros  and poles. Depending on 
eq 



1 2 1  

t h e  e x t e n t  t o  which the  e f f e c t  of t h e  poles  of H ' ( 8 )  can be ignored i n  

t h e  reg ion  of operat ion,  t h i s  method i s  an approximation t o  feedine  back 

t h e  output  and i t s  (n-1) de r iva t ives  (or  t h e  phase va r i ab le s )  i n  a l i n e a r  

combination. An advantage of the method i s  t h a t  t h e  loca t ion  of t h e  f ixed  

c losed  loop poles  w i l l  be independent of ga ins  loca ted  anywhere i n  t h e  

system. The following example i s  an i l l u s t r a t i o n  of t h i s  procedure. 

Example 5-2: 

w i th  N represent ing  a nonl inear  gain.  

t h e  output  can be fed back, and t h a t  it can be  fed back only t o  the  inpu t .  

I f  t h e  s t a b i l i t y  s e c t o r  i s  not  requi red  t o  be i n f i n i t e ,  t h e  r e a l i z a t i o n  

of H ' ( 8 )  as t h e  feedback t r a n s f e r  func t ion  can be used t o  ge t  s i m i l a r  

r e s u l t s ,  w i th  t h e  primary d i f f e rence  i n  t h e  two systems being t h e  same as 

those  poin ted  out i n  t h e  above d iscuss ion  of t h i s  method. 

H '(s) might be chosen as 

eq 

Here t h e  same f ixed p l a n t  i s  considered as i n  Example 5-1, 

However, i t  i s  assumed t h a t  only 

eq 

For example, 

eq 
A 

625 (sz+e+l) 
H e p )  IC 2 O  

(s+25) 
(5 -9)  

The open loop t r a n s f e r  funct ion of t h e  l i n e a r  p a r t  of t h e  system then 

becomes 

(5-10) 

It has  been shown by Brockett  and W i l l e m s  (1965a) t h a t  t h e  s t a b i l i t y  

s e c t o r  of a t h i r d  o rde r  nonl inear  system wi th  no zeros  is t h e  same as 

the linear s t a b i l i t y  s ec to r .  

s e c t o r  of t h e  above system is  (0,58.3]. 

less than t h a t  i nd ica t ed  by Equation 5-9, t h i s  s t a b i l i t y  s e c t o r  can be 

increased  by t he  same r a t i o .  

From t h i s ,  i t  fol lows t h a t  t h e  s t a b i l i t y  

By makinR t h e  gain of H ' ( 8 )  
eq 
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summary 

I n  t h i s  chap te r  t h e  p r o p e r t i e s  of t he  systems which r e s u l t  from 

t h e  b a s i c  design procedure are inves t lga t ed  from a p r a c t i c a l  viewpoint ,  

I n  p a r t i c u l a r ,  t h e  e f f e c t  of t he  zeros  of H 

t o  t h e  po le s  of G ( s )  i s  considered. 

s t r u c t u r a l l y  s t a b l e  i n s o f a r  as t h i s  e f f e c t  i s  concerned except  i n  those  

cases  having c l o s e d  loop poles  on o r  near t h e  imaginary axis.  

(s) no t  be ine  e x a c t l y  equal  
eq 

It i s  concluded t h a t  t h e  systems are 

Poss ib l e  procedures  t h a t  might be u s e f u l  when t h e  b a s i c  d e s i m  

method I s  no t  app l i cab le ,  e i t h e r  because of t h e  l o c a t i o n  of t h e  nonl inear-  

ity in t h e  system o r  because a l l  t h e  s ta te  v a r i a b l e s  cannot be fed  back, 

a r e  d iscussed .  Although no general  sol-ution t o  t h i s  problem i s  obta ined ,  

t h e r e  are several approaches sugges t ed .  The b e s t  approach w i l l  depend 

upon t h e  p a r t i c u l a r  system t o  be c o n t r o l l e d  and t h e  requi red  performance 

of t h e  system. 



CHAPTER VI 

CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK 

C onc lu s ion s 

Design procedures for single input, single output systems based 

on the modern control theory concept of feeding back all the state vari- 

ables have been developed, and the characteristics of the resulting 

systems studied. 

method as developed by Schultz (1966). 

of series compensation as practiced in classical control theory and 

state variable feedback as suggested by modern control theory. 

procedure for designing linear systems for a desired closed loop transfer 

function is developed from the matrix representation of the system. From 

this, a procedure for linear gain insensitive systems is developed. 

This procedure for gain insensitive systems is then used to deveiop the 

principal results of this dissertation, a method for designing certain 

nonlinear and/or time-varying systems. 

These procedures are based on the concept of the SVF 

They utilize both the concept 

First, a 

The basic design procedure applies to systems with a single 

memoryless nonlinear and/or time-varying gain whose input-output graph 

is confined to the first and third quadrants. 

linear systems to which the Popov stability criterion applies. 

basic form, it is limited t o  systems with the nonlinear and/or time- 

varying gain located as shown in Figure 4-1. 

systems classified a6 the principal case and the simplest particular 

case. 

This is the class of non- 

In its 

It is applicable only to 

Modifications of the basic procedure which can be used to overcome 

12 3 
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The requirement concerning t h e  l o c a t i o n  of t h e  n o n l i n e a r i t y  are d is -  

cussed. 

S i g n i f i c a n t  f e a t u r e s  of the  b a s i c  design procedure and t h e  

r e s u l t i n g  systems are as follows: 

1. The procedure is app l i cab le ,  i n  a p r a c t i c a l  s ense ,  t o  

systems of any order .  Basic mat r ix  o r  block diagram 

manipulat ions and the  s o l u t i o n  of a l i n e a r  a l g e b r a i c  

equat ions are required i n  ca r ry ing  i t  ou t .  

2. The s e c t o r  of absolu te  s t a b i l i t y  i s  i n f i n i t e .  

3. 

4. 

The output  of t h e  system i s  bounded f o r  bounded inpu t s .  

The c losed  loop system can be  represented  by an equiva len t  

system f o r  studying input-output r e l a t i o n s  which c o n s i s t s  

of a f i r s t  o rde r  nonl inear  and/or time-varying p o r t i o n  

I n  series wi th  an (n-1)s t  o rder  s t a b l e  l i n e a r  por t ion .  This  

equiva len t  system can be  used t o  determine t h e  c losed  loop 

response for knom inpu t s .  

5.  The c losed  loop system i s  l i n e a r i z e d  t o  the  e x t e n t  t h a t  

(n-1) of t he  closed loop poles  a r e  equal  t o  (n-1) of  t he  open 

loop po le s ,  independent ,of  t h e  non l inea r  gain. 

6. I n  systems where the ope ra t ion  i s  l i n e a r  f o r  normal 

c o n t r o l  s i g n a l s  but  non l inea r  f o r  l a r g e  c o n t r o l  s i g n a l s ,  

i t  is poss ib l e  t o  design f o r  des i r ed  performance i n  the  

l i n e a r  reg ion  without having t o  worry about system 

s t a b i l i t y  f o r  large c o n t r o l  simal-s. 
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Suggestions for Further Work 

Since the proposed design procedure appears to have immediate 

practical applications, one obvious area of further work is in the 

application of the method to actual control problems. 

predict what type of problems might be encountered until this is done. 

It is difficult to 

There are several theoretical questions concerning the method 

which need to be investigated. The sensitivity of the system response 

to parameter changes in the linear plant need to be investigated. Morgan 

(1963, 1966) has studied this problem, and Bob White, a graduate student 

at the University of Arizona, is currently investigating the subject of 

sensitivity in systems with state variable feedback. 

The equivalent system allows the calculation of only the output 

variable and the control signal, as the other state variables in this 

equivalent system are not physical variables. 

magnitude of these state variables will in general probably not be 

excessive compared to corresponding magnitudes in a system with unity 

feedback from the output only. However, this is largely supposition, 

and the subject needs to be investigated. 

linear element can be found from the equivalent system, this could be 

used in the actual system block diagram to determine the value of any 

desired state variable. 

Indications are that the 

Since the output of the non- 

There needs to be more of a comparison between the performance 

of systems designed by the proposed method and those designed by 

classical methods (or by other modem control methods). 

for this comparison must be chosen. 

A criterion 

This problem will be resolved at 
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least in part by the success with which the procedure can be applied to 

actual systems. 

The modifications to the basic procedure suggested in Chapter 5 

need to be investigated more thoroughly. For example, if all the state 

variables cannot be fed back, is the method of determining feedback 

transfer functions suggested in Chapter 3 or that of realizing an 

H ' (e)  as suggested in Chapter 5 better for a particular application? 

More information on haw to choose a desired closed loop transfer 

Likewise in the nonlinear 

eq 

function in the linear case would be helpful. 

case, more information on how to choose the location of the closed loop 

poles that are made independent of the nonlinear gain would be helpful. 

It is shown that the linear gain insensitive systems always 

satisfy Kalman's frequency condition for some performance index. 

be interesting, and perhaps useful, to know something about the performance 

index for which this condition is satisfied and whether it can be related 

to the closed loop transfer function. 

It would 

More information concerning the extent of the effect of small 

changes in the pole and zero locations on the validity of the closed loop 

response as calculated from the equivalent system is needed. Additional 

analog computer simulations would be helpful at this point and would 

also provide other useful information concerning systems designed by the 

proposed method. 

In conclusion, although several aspects of systems designed by 

the proposed method still need to be investigated, it is felt that the 

analysis of such systems presented in this dissertation is enough to 

indicate the possible usefulness of this approach to the design of control 

systems with nonlinear and/or time-varying gains. 

a 
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